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METHOD OF UNDETERMINED COOFFICIENTS:

The particular integral of an n™ order linear non-homogeneous differential equation F(D)y=X
with constant coefficients can be determined by the method of undetermined coefficients
provided the RHS function X is an exponential function, polynomial in cosine, sine or sums or
product of such functions.

The trial solution to be assumed in each case depend on the form of X. Choose PI from the
following table depending on the nature of X.

S1.No. RHS function X Choice of Pl y,
1 K e™ C e™
2 K sin (ax+b) or K cos (ax+b) C, sin (ax+b)+ €, cos (ax+b)
3 K e* sin (ax+b) c, e¥sin (ax+b)+ ¢, €*cos (ax+b)
or
Ke* cos (ax+b)
4 K x"where n=0,1,2,3..... CO+C1X+C2X2+....+CH_1 X" +C X
> K x" e*where n=0,1,2,3..... e™ €, +CX+C,X> +...4+C, X"
6 K x"sin (ax+b) a sin(ax+b)+b, cos(ax+b)
or +a,.X.sin(ax+b) +b x cos(ax+b)

K x" cos (ax+b) +a, .X".sin(ax+b)+b x cos(ax+b)

+a,.X".sin(ax+b) + b x" cos(ax+ b)

7 K x" e®sin (ax+b) e™ a, sin(ax+b)+b, cos(ax+b)
or

) +a, .X.sin(ax+b) +b x cos(ax+b)
K x" e®cos (ax+tb)

+a,.X".sin(ax+b)+b x cos(ax+b)

+a,.X".sin(ax+b) + b, x" cos(ax+b)

1. Solve by the method of undetermined coefficients (D*~3D+2)y =4e *

Sol: m*-3m+2=0=>(M-1)(M-2)=0 =>m=1,2

X 2x
y, =ce*+c,e

Assume P1 y, = c,e’* substituting this in the given d.e we determine the unknown coefficient as
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(D2 3D +2)y = 4e*
9ce™ —9ce’™ +2ce’* = 4e™
2ce™ =4e™ = c=2

sy, =2e”

2
2. Solve d 2/ + 2ﬂ +4y =2x +3e *by the method of undetermined coefficients.

dx dx

Sol: We have (D* +2D+4)y=2x +3e~*

—2+4/— —2+24/3i
244-12 222431 |,

2 2

y, =e™" [1 cos/3x+¢, sin\/ng

Assume Pl in the form y=aXx’ +a,X+a; +a,e”

AEis m*+2m+4=0 = m=

x
Dy =2ax+a, -ae™”
D’y=2a, +a,e”™
Substituting these values in the given d.e
We get 2a, +a,6 " +2(2a,x+a, —a,6 ") +4(a,x* +a,x+a, +a,6 ") =2x> +3e*
Equating corresponding coefficient on both sides, we get

NG

N | =

4a, =2 = a, =
X : 4a,+4a,=0 :4[%)+4a2:0

1
2+4a,=0=4a,=-2 = a, :_5

C :2a,+2a,+4a,=0

2 lj+2 —l)+4a3 =0=>4a,=0
2 2

e*:a,—2a,+4a,=3
3a,=3 = a, =1

1 1
Py =—x?P——x+e*
Yo 2 2

<
y=e"* ‘1 cos/3x+, sin\/gx;%x2 —% X+e™
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dy

3. Solve by using the method of undetermined coefficients —--9y = x* +e™ —sin3x
X

Sol: We have (D* —=9)y = x> +e* —sin3x
AEism*-9=0 = m’°=9 = m=43
Y, =ce’ +c,e
Choose Plas Y= AX’ +Bx* +Cx + D+ Ee* + Fsin3x+Gcos3x

y' =3Ax” +2Bx +C +2Ee** +3F cos3x —3Gsin3x
y" =6AX+2B +4Ee™ —9F sin3x —9G cos3X

Substituting these values in the given d.e, we get

6AX+2B +4Ee® —9F sin3x—9G cos3x —9 AX® + Bx + Cx + D + Ee® + F sin3x + G cos3X }
=X’ +e” —sin3x
Equating the coefficient of
X :—9A=1 = A=—L
9
x’: —9B=0 = B=0
X :6A-9C=0 = 6(—%]—9(: =0

:>—§—9C=0 :>9C=—§ .'.C=—i

C :2B-9D=0=D=0

e 4E—9E =] = —5E=1 = E:_%

sin3X:-9F-9G=0 = F :%

c0s3X:-9G-9G =0 =G=0

Complete solution Y=Y +Y,

s y=ce’+c,e™ e 2 L +%sin3x
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METHOD OF VARIATION OF PARAMETERS:
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I.e.

¥ = Cpcos x + C, sin x —x cos x + sin x log sin x

m=+2M
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MODULE -2

DIFFERENTIAL EQUATIONS 11
SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS:
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SOLUTION OF CAUCHY’S HOMOGENEOUS LINEAR EQUATION AND
LEGENDRE'’S LINEAR EQUATION
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PROBLEMS:
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Differential equations of first order and higher degree

If y=f(x), we use the notation % = p throughout this unit.
X

A differential equation of first order and n™ degree is the form
Ap"+Ap" +ADP" 4.t A =0
Where A, A,A,...A are functions of x and y. This being a differential equation of first order,

the associated general solution will contain only one arbitrary constant. We proceed to discuss
equations solvable for P or y or x, wherein the problem is reduced to that of solving one or more
differential equations of first order and first degree. We finally discuss the solution of clairaut’s
equation.

Equations solvable for p

Supposing that the LHS of (1) is expressed as a product of n linear factors, then the
equivalent form of (1) is

p-fi(xy) p-f(xy) .. p-fi(xy) =0 -(2)
= p_fl(xay) =09 p_f (X,Y) =0... p—fn(X,y) =0

All these are differential equations of first order and first degree. They can be solved by
the known methods. If F (X,y,¢) =0,F (X,y,¢) =0,... F, (X,Y,C) =0 respectively represents the

solution of these equations then the general solution is given by the product of all these solution.
Note: We need to present the general solution with the same arbitrary constant in each factor.

dy\’ d
1. Solve: y _y) + X-Yy —y—x:O
dx dx

Sol: The given equation is

yp? +(Xx—y)p-x=0

_—(x=y)EJ(x=y) +axy

p 2y
_(y=x)£(X+Yy)
p_
2y
Ie’p_y—x+x+y or p=y—x—x—y
2y
le, p=1 or p=-X/y
We have,
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dy
dx

Also,ﬂ:_—X or ydy + xdx = :>Iydy+fxdx=k
dx vy

=l=>y=X+cC or (y—-x-c¢)=0

2
ie., R ?zk or y’+x*=2k or (xX*+y*-¢)=0

Thus the general solution is given by (y-x-¢) (x> +Yy —c) =0
2. Solve: X(Y) —(2x+3y)y' +6y=0

Sol: The given equation with the usual notation is,
Xp® —(2X+3y)p+6y=0

. (2X+3Y) £4/(2x +3y)? —24xy

2X
p:(2x+3y)i(2x—3y):2 or3—y
2X X

We have

Q:Z:Idy =2jdx+c or y=2x+c or (y—-2x-c¢)=0

dx
Also dy _3y or d_y:3d_x = @ _ d—X+k

dx X y X y X

ie., logy=3logx+k or logy=Ilogx’+logc, where k =logXx
ie., logy=log(cx’) = y=cx’ or y—cx’ =0
Thus the general solution is (y-2x-c) (y-cx’) = 0

3) Solve P(P+Y)=X(X+Y)

Sol: The given equation is, P>+ py—X(X+Yy) =0

—yi\/y2+4x(x+y)
p:
2
—yi\/4x2+ Xy+y> —y+(2Xx+Y)
p: =
2 2
ie., p=x orp=_2(yT+X)=—(Y+X)
We have,
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——x:>y—X—+k
dx 2

Also, dy =—Yy+X
dx

ie., g—y+ y =—x,isalinear d.e (similar tothe previous problem)
X

P=1,Q=—xel ™ =¢"
Hence ye* = j—xe dx+c
ie., ye* =—(xe* —e*)+c, integrating by parts.

Thusthe general solutionis givenby (2y - x* —c)[ " (y + x—1)—¢ |=0

Equations solvable for y:

We say that the given differential equation is solvable for y, if it is possible to express y
in terms of x and p explicitly. The method of solving is illustrated stepwise.
Y={(x, p)
We differentiate (1) w.r.t X to obtain
dy dp
aPh ( Y d_)
Here it should be noted that there is no need to have the given equation solvable for y in
the explicit form(1).By recognizing that the equation is solvable for y We can proceed to
differentiate the same w.r.t. x. We notice that (2) is a differential equation of first order in p
and x. We solve the same to obtain the solution in the form. ¢(X, p,c) =0
By eliminating p from (1) and (3) we obtain the general solution of the given
differential equation in the form G(x,y,c) =0

Remark: Suppose we are unable to eliminate p from (1)and (3), we need to solve for x and y
from the same to obtain.

X=F1(p,C), y:F(pac)

Which constitutes the solution of the given equation regarding p as a parameter.

Equations solvable for x

We say that the given equation is solvable for x, if it is possible to express x in terms of y

and p. The method of solving is identical with that of the earlier one and the same is as follows.

x=f(y,p)
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Differentiate w.r.t.y to obtain

%:l:F(X,y %j
dy p dy

(2) Being a differential equation of first order in p and y the solution is of the form.

$(y,p,c)=0

By eliminating p from (1) and (3) we obtain the general solution of the given d.e in the form

G(x,y,¢)=0
Note: The content of the remark given in the previous article continue to hold good here also.
1. Solve: y—2px=tan~ (xp*)
Sol : By data, y =2px=+tan (xp*)
The equation is of the form y = f (x, p), solvable fory.

Differentiating (1) w.r.t.x,

dp 1 dp
-2p—-2—Xx= X2p—
P==P dx  1+X p“[ pderp}

. 1 dp
e, —p—-2X—=——| 2Xp—
P 1+ X p“{ pdx+p}

2

. p dp p
ie, —p- =2X— +1
1+x2p4 dX[l+x2p4 ]

2 4 2.4
e, - p{w] =2Xd_p{w}

+x2pt d| 1exZp?
ie., logx+2log p =k
consider y =2px+ tan_l‘(sz)

and xp2 =C
Using (2) in (1) we have,

y= 2\/c/x.x+tan_1(c)

Thus y = 24ex + tan” ) C, is the general solution.
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2. Obtain the general solution and the singular solution of the equation y+ px = p°x

Sol: The given equation is solvable for y only.
y+ px=p°x
Differentiating w.r.t X,

ie.,—2p=xd—por%=_—cm:>§%+l jd_p
dx x 2p X 2°p

ie.,logX+log\/B =k or log(X\/B)zlogC:X\/E =C
Consider, y+ px= pzx

X{/Pp=C or x2p=c or p=c/Xx

Using (2) in (1) wehave, y +(c/ x2)x = (c2 / x*H)x*

Thus Xy +c=c’x is the general solution.

Now, to obtain the singular solution, we differentiate this relation partially w.r.t c,
treating c as a parameter.
Thatis, 1=2¢cx or c=1/2x.

The general solution now becomes,

1
Xy +— =——X
y 2 NG

Thus 4x*y +1=0,is the singular solution.

3) Solve y=p sin p + cos p

Sol: y=psinp+cosp

Differentiating w.r.t. X,

p=pcos p%+sin p%—sin p%
dp

ie., 1=cosp— or cosp dp=dx
dx

= [cos pdp = [dx+cC
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le.,sin p=X+C Or X=sin p—C

Thus we can say thaty = p sin p + cos p and X =sin p-C constitutes
the general solution of the given d.e

Note:sin p=x+Cc= p:sin_l (X+c).

We can as well substitute for p in (1) and present the solution in the form,

y = (x+C)sin~ L (x+¢)+cossin 1 (x+¢)
4) Obtain the general solution and singular solution of the equation

y=2px+p’y
Sol: The given equation is solvable for x and it can be written as

2X = B - py........ )]
Differentiating w.r.t y we get
2 _yd_ 0
p p pdy dy

:{l+ pJ(HX%J =
p p dy
dp

Ignoring (lp + p]which does not contain d—,this gives
y

1+1d_p:0 or ﬂ+d—p=0

p dy y p
Integrating we get
yp=C........ (2)

substituting for p from 2 in (1)

y> =2CX+C

5) Solve p* +2pycotx =y

Sol: Dividing throughout by p?, the equation can be written as

2 2y . 2
— ——cot X =1 adding cot” xtob.s
p
2
y—z—z—cotx+cot2X:l+cot X
p

2
or (1 —cot XJ = cosec’x
p
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:>1—cotX=icoseCX

p
= y = cot X+ cosecx
dy / dx
:>d_y= sin X dx andﬂ= sin X
y cosX+1 y cosx—1

Integrating these two equations we get
y(cosx+1)=c, and y(cosx—-1)=c
general solutionis

y(cosx+1)—c y(cosx—1)—c =0

6) Solve: p° —4x’p—12x*y =0 , obtain the singular solution also. .

Sol: The given equation is solvable for y only.

p’—4x’p-12x'y =0 .......... (1)_
p>+4x p
=—7p—=f(X

Differentiating (1) w.r.t.x,

2081 4x P L a0xp- 126 p - 48Xy =0
dx dx

2x*

g—p(2p+4x5)+8x3(xp— )=0
X

dp 2
(p+2x5)d—§=7p(p+2x)

dp_2p_,

dx X

= Integrating log\/E—log x=Kk
= p=C°x .. equation(1)becomes

ct +4c¢’x’ =12y
Setting ¢* = k the general solutionbecomes
k*+4kx =12y
Differentiating w.rtk partially we get
2 +4x°=0
Using k =2 * in general solution we get

® +3y =0 as the singular solution
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7) Solve p* —4xyp+8y* =0 by solving for x.

Sol: The given equation is solvable for x only.
p’ —4xyp+8y> =0

B p3 + 8y2

4yp
Differentiating (1) w.r.t.y,

X = f(y,p)

3p2@—4xy%—4yp.lp—4px+l6y:0

dy dy
%(3p2—4xy)=4px—12y
dy

B 3 2 3 2
dp[ 5,0 P78y }[p +8y —12y}
dy | p y
@_2p3_8y2:|_ p3_4y2
dyf p y
2d S_gy? )
=P (p gy =¥
p dy
2dp_1
pdy vy

2logp =logy+logc

UsingP = \/ain(l)wehave,

cy oy —4xyJoy +8y* =0
Dividingthroughoutby yﬁzy 2 we have,
c/e—4ax/c +8 y=0
Je(c—4x)=-8,[y

Thusthe generalsolutionisc(c — 4x)* =64y

Clairaut’s Equation
The equation of the form y=px+ f(p)is known as Clairaut’s equation.

This being in the form y = F (x , p), that is solvable for y, we differentiate (1) w.r.t.x

So——=p=p+Xx—+Tf'(p —

dy dp dp
dx dx dx
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This implies that % =0 and hence p=c
X

Using p = in (1) we obtain the genertal solution of clairaut's equation in the form
y=cx+ f(c)

1. Solve: y:px+E

Sol: The given equation is Clairaut’s equation of the form y= px+ f (p), whose general solution
is y=cx+ f(c)

Thus the general solution is y=cx+ a
c

Singular solution
Differentiating partially w.r.t ¢ the above equation we have,

O=x—i2
C

’a
C=,]—
X

Hence y = cx+(a/c)becomes,
y=va/x.x+aJx/a

Thus y2 = 4ax is the singular solution.
2. Modify the following equation into Clairaut’s form. Hence obtain the associated general

2
and singular solutions XP~ — Py +kp+a=0

Sol : xp2— py + kp +a =0, by data

ie., xp2 +kp+a=py

p(xp+k)+a
p

. a
e, y= px+{k+—)
Y

Here (1) is in the Clairaut’s form y=px+f(p) whose general solution is y = ¢x + f (c)

ie., y=
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Thus the general solution is y = cx J{k + Ej
C

Now differentiating partially w.r.t c we have,

a
O:X——2

C
c=+a/Xx

Hence the general solution becomes,

y-k=2\/a_x

Thus the singular solution is (y - k)* = 4ax.

Remark: We can also obtain the solution in the method: solvable for y.

3. Solve the equation (px —y) (py + x) = 2p by reducing into Clairaut’s form, taking the
substitutions X =x*, Y =y’

SoI:X:x2 :>d—X=2x
dx

Y=y2 :>d—Y=2y

dy

dx dY dX dx dx
) 1
le., p=—.P.2x
p 2y

ie.,pzﬁP

NG

Consider(px—y)(py+Xx)=2p

RN JIX JIX
ie., {WPKW} {Wpﬁﬁ}zwp

ie., (PX =Y) (P+1) =2P

: 2P .. : . L
le., Y = PX ———is in the Clairaut's form and hence the associated genertal solution is

P+1
Y=ox -2
c+l1
Thus the required general solution of the given equation is y2 =CX — =€

c+1
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4)Solve px—y py+Xx =a’p,use the substitution X =x>,Y = y>.
dXx

Sol: Let X =x*=>— =2x
dx
Y:xzzﬁzzy
dy
N0W,|O=ﬂ=d—y ar OI—xand IetP=O|—Y
dx dY dX dx dx

P=_L paxor p=2p
2y

JX

NG

Consider (px—y)(py+x) =2p

JX JX JX
X X - || Y p X [ 2% p
{w N N
(PX=-Y)P+1)=2P
Y =PX _ 2P
P+1
Is in the Clairaut’s form and hence the associated general solution is

Y —ex — 2

Thus the required general solution of the given equation is y* = cx? il
C+

5) Obtain the general solution and singular solution of the Clairaut’s equation Xp> —yp +1=0
Sol: The given equation can be written as
_xp’+1

y=——— = Yy=px+—isintheClairaut's formy = px+ f (p)
p

whose general solutionisy =cx+ f (c)
L 1
Thus general solutionis y = cx+—
C

Differnetiating partially w.r.t.c we get

1/3
0= X——33 :(%)
X

Thus general solution becomes

2 1/3 X 2/3
y:(_j X+(—] :22/3y: x23
X 2

or 4y’ =27x
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MODULE -3
PARTIAL DIFFERENTIAL EQUATIONS

Introduction:

Many problems in vibration of strings, heat conduction, electrostatics involve two or more variables.
Analysis of these problems leads to partial derivatives and equations involving them. In this unit we first
discuss the formation of PDE analogous to that of formation of ODE. Later we discuss some methods of
solving PDE.

Definitions:

An equation involving one or more derivatives of a function of two or more variables is called a partial
differential equation.

The order of a PDE is the order of the highest derivative and the degree of the PDE is the degree of highest
order derivative after clearing the equation of fractional powers.

A PDE is said to be linear if it is of first degree in the dependent variable and its partial derivative.

In each term of the PDE contains either the dependent variable or one of its partial derivatives, the PDE is
said to be homogeneous. Otherwise it is said to be a nonhomogeneous PDE.

e Formation of pde by eliminating the arbitrary constants
e Formation of pde by eliminating the arbitrary functions

Solutions to first order first degree pde of the type
Pp+Qqg=R

Formation of pde by eliminating the arbitrary constants:

(1) Solve: ) x> y2

Z = — + )
Sol: Differentiating (i) Sartially with respect to x and y,
2az_2x 1 loz p
ox a’> a’ Xox X
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200 2y 1 1a q

&y b2 b’ yox vy

Substituting these values of 1/a* and 1/b” in (i), we get

(2)z=(x"+a) (y" +b)
Sol: Differentiating the given relation partially

(x-a) 2+ (y-b) 2+ 22 =k ...(1)

Differentiating (i) partially w. r. t. x and y,
15} 0
(x—a)+z—Z =O,(y—b)+z—Z =0
ox oy

Substituting for (x- a) and (y- b) from these in (1), we get

2
oz (o
22[1 + (—Zj + (—Zj ] =k” This is the required partial differential equation.
X y
(3)z=ax+by+cxy ..(i)
Sol: Differentiating (i) partially w.r.t. X y, we get
0z ..
— =a+cy..(11
P y-(ii)

2 _ b+ ox.(iii)

It is not possible to eliminate a,b,c from relations (i)-(iii).

Partially differentiating (i1),

822 J— C . . . .o cee
oxy Using this in (i1) and (ii1)
_ 0z 0’z
ox ° oxdy
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oz 0’z
b=—-x
dy  Oxdy
Substituting for a, b, ¢ in (i), we get

Z—X%— o'z + %—X Oz +X o'
ox y@x@y y y

Z=X—+y——X
ox oy oxdy
X2 y2 Z2
5) 5= +5+—=1
()a2 b2 CZ

Sol: Differentiating partially w.r.t. X,

2xX 2z 0z X z Oz
—2+—2—=0,0r—2=——2—
a c” Ox a c” Ox

Differentiating this partially w.r.t. x, we get

1 1 (azjzﬂazz ¢? (8zj2+ 0%z
[ p— _ _ - = — - 7 —
a’ c? [\ox ox? [ 7 a2 Ox ox*

: Differentiating the given equation partially w.r.t. y twice we get

20z (62 0%z z0z (z\ 0%z
——=|=| +z— ———=|—| tz—
y oy oy oy x 0x \0x ox
Is the required p. d. e..

Note:

As another required partial differential equation.

P.D.E. obtained by elimination of arbitrary constants need not be not unique

Formation of p d e by eliminating the arbitrary functions:

1) z=f(x> +y)
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Sol: Differentiating z partially w.r.t. x and y,

oz 0z
=—=f'(X*+y)2x,g=—=f'(X* +y?).2
P o ( y©)2X,9 oy ( y©).2y
p/q=x/y or yp-xqg=0 is therequired pde
(2) z=f(x+ct)+ g (x -ct)

Sol: Differentiating z partially with respect to X and t,

az ' ' azz n n
PV f'(x+ct)+g (x—ct),y: f"(x+ct)+g"(x—ct)

Thus the pde is
0’z 0’z
o o
G)x+y+z=fx’+y +2)

=0

Sol:Differentiating partially w.r.t. X and y

1+ 2 f'(x°+y>+2%) ox+22%
OX OX

0z 0z
l+—=f'"(xX*+y° +22){2y+2z—}
oy oy

1+(0z/0x) _ 1+(0z/0y)
X+2(02/0X) y+12(0z/0y)

2f' (X +y*+2%) =

=22+ 2= P =X=y i the required pd
x Y is the required pde

4) z =f(xy/z).

Sol: Differentiating partially w.r.t. x and y

o _ f(ﬁj{z_ﬂg}
OX z Jlz 2z ox
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(ﬂ}; 0z / X _ oz/0y
z (y/2){1—-(x/z)(0z/0x} (x/z){1—-(y/z)(0z/0Y}
82 0z
—=Y
"ox oy
or xp = yq is the required pde.

(5)z=y* +2 f(1/x + logy)

Sol : g:2y+2f '(1/x+logy){l}
oy y

0z 1
= =2f'(1/x+1 ——
p ( ogy){ Xz}

X

0z 0z
2f'(/x+1 =X’ ==y =-2
( ogy) X Y(ay yj

oz oz
Hence X &"‘ y— =2y’

oy
(6) Z=xD(y) +y y(x)

Sol : % =p(y)+ Yy '(X);% =X@'(y) +y(X)

Substituting  @'(Y) and y'(X)

0’z e
— —[Xd(y) + Yy (X
yaay = yay [Xg(y)+ Yy (X)]
027 o7 o7 is the required pde.
Xy =X—+Yy—-1Z
oxdy ox oy
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7) Form the partial differential equation by eliminating the arbitrary functions from
z=1(y-2x) + g(2y-x) (Dec 2011)
Sol: By data, z = f(y-2x) + g(2y-x)

p

0z , .
=5, = 2 y=29-9'2y-x
X

0z
q=—=f'(y-2x)+29'2y-x)
oy

622 n n
r=—=4f"(y-2x)+9"2y = X).eeoerevene. (1)
OX
s=TL (Y= 20-20"2Y X))
xoy TV 720720°CY 0.
o'z, )
t=yzf (Y=2X)+49"2Y = X)rreerennnne. (3)
MHx24+Q2)=2r+s=61"(y=2X).ccco...... (4)
(Q)x2+(3) =25+t =-3f"(Y=2X)ereuee... (5)
Nowdividing(4) by (5)we get
20¥S ) orar+5s5+2t=0
2s+t
2 2 2
Thus 22+5 0’z 0’z

PR ay+25=0istherequired PDE
X X

LAGRANGE’S FIRST ORDER FIRST DEGREE PDE: Pp+Qq=R

(1) Solve: yzp + zxq = xy.

Sol :

dx_dy_dz
yZ X Xy

Subsidiary equations are

From the first two and the last two terms, we get, respectively
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%:d—xyor xdx—ydy=0 and %ZQOF ydy—zdz=0.
y

Integrating we get X’ - y2 =a, y2 — 7 =b.

Hence, a general solution is
Oy, y* —2) =0

(2) Solve: y7p - xyq = x(z-2y)

ol B e
y© Xy X(z-2y)

From the first two ratios we get

X+y' =a from the last ratios two we get

E + E — 2

dy 'y

from the last ratios two we get

dz z
— +— =2 ordinary linear differential equation hence

dy
yz—y=b

solutionis ®(x°+ y>, yz—y)=0

(3) Solve : z(xp — yq) = y* —x°

S
X -7y Yy —X

%:%, or xdy+ydx=0 or d(xy)=0,

on integration, yields xy=a
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xdx +ydy +zdz=0 x*+y +z°=b
Hence, a general solution of the given equation
DO(xy,x2+y2+72)=0

y—7  Z-X_ X-Yy
(4) Solve: P+ q=
yZ ZX Xy

sol: Y dx=—Lady=Y g7

xdx+ydy+zdz=0 ...(1)
Integrating (1) we get
x>+ y2 +7°=a
yzdx +zx dy +xydz=0 ...(i1)
Dividing (i1) throughout by xyz and then integrating,
we get xyz=>b
O(x*+y* +7°,xyz) =0
(5) (xF22)p + (4zx —y)q=2x"+y

dx dy  dz
X+27 4mx-y 2X°+y

Sol : (i)

Using multipliers 2x, -1, -1 we obtain 2x dx —dy —dz=0
Using multipliers y, X, -2z in (i), we obtain

y dx + x dy — 2z dz = 0 which on integration yields
xy—z"=b ...(iii)

5) Solve z,, =sinXxsiny for whichz, =-2sin ywhenx=0and z=0

when y is an odd multiple of z
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Sol: Here we first find z by integration and apply the given conditions to determine the arbitrary

functions occurring as constants of integration.

The given PDF can be written as afa = sinXsiny
ox\ oy

Integrating w.r.t X treating y as constant,
oz . . :
5 =siny |sinXdx+ f(y)=—sinycosx+ f(y)

Integrating w.r.t y treating X as constant
Z=-cosX Isin ydy+ If (y)dy+g(x)
Z= —cosX (—cosy)+F(y)+g(x),

where F(y)= jf(y)dy.

Thus z =cosxcos Y+ F(y)+g(x)

Alsoby data,%le—ZSin y when x =0. U sin g thisin (1)
—2siny=(-sin y).1+ f(y) (cos0=1)

Hence F(y)= If (y)dy = I—sin ydy=cosy
Withthis, (2) becomes z = cos Xcos y +cos Yy + g(X)

U sin g theconditionthat z =0 if y =(2n +1)%in(3)we have
T V4
0=cosXxcos(2n+1)—+cos Xc(2n+1)5+ g(x)

But cos(2n+1)% =0.and hence0=0+0+ g(X)

Thus the solution of the PDE is given by

Z=COS X cosy + cosy

Method of Separation of Variables

1) Solve by the method of variables 3U, +2u =0, giventhatu(x,0) =4e™*
0

] ou
. Given 3—+2— =0.............. 1
Sol: ox 3 ()
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Assume solution of (1) as

U=XY where X=X(x);Y =Y (Yy)

ou 0
3—(xy)+2—(xy)=0
ax( y) p (xy)

:>3Yd—x+2 d—Y:O :>—d—X=_—2d—Y
dx dy X dx Y dy
Lot > X o 9K gy
X dx X

K
=3log X =kx+c¢, = log X =TX+C1

2 dY dY —Kdy
= — = ——"
dy Y 2

_ .
Kdy+02:>Y=e 2"

= logY =
Substituting (2) & (3) in (1)

2-Yrose
3

K
U=e"
Also u(x,0) =4e”*

2X

ie, 4e7* = Ae [?j = 4e” = Ae
Comparing we get A=4 & K=-3

L
3

)
U=4 is required solution.
. ou o . sy
2) Solve by the method of variables 4d— + 5 =3u, giventhat u(0, y) = 2e
X

Solution: Given 4a—u+a— =u
OX oYy

Assume solution of (1) as

u=XY where X = X(x):Y =Y(y)
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0 0
4—(XY)+—(XY)=3XY
o KN+ (XY)

:>4Yd—X+Xd—Y=3XY :>—d—X+ld—Y:3
dx dy X dx Y dy
Let—d—x=k, 3—ld—Y=k
X dx Y dy

Separating variables and integrating we get

= log X :%+Cl , logY¥Y=3-k y+c,

kx
¢ B
— X =e4  and Y=g Vo
kx kx
—+3-ky —+3-ky
Hence u= XY =g %" g4 = Ae* where A=¢ “*%

put x=0 and u =2¢e”’

The general solutionbecomes

2% =Ae’ V= A=2and k=-2
.. Particular solutionis

4 _2 %X+5y

APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS:

Various possible solutions of standard p.d.es by the method of separation of
variables.

We need to obtain the solution of the ODEs by taking the constant k equal to
1) Zero ii) positive: k=+p* 1i1) negative: k=-p’
Thus we obtain three possible solutions for the associated p.d.e

Various possible solutions of the one dimensional heat equation u; =c2uxx by the method of
separation of variables.

2 0
37

Consider 8_u c
ot

Let u= XT where X=X(x),T=T(t) be the solution of the PDE

Hence the PDE becomes
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o XT o XT dT d*X
=C orX—=c¢

ot ox’ dt dx
2
Dividing by ¢*XT we have %d—T =— d’X
cT dt X dx

Equating both sides to a common constant k we have

2
id >2(:k and zLd—T =k
X dx cT dt
2 ar ., -
C;X)z(—kx=0 anda_C kT =0

D’~k X=0 and D-c’k T=0

2
Where D? :% in the first equation and D = % in the second equation
X

Case (i) : let k=0
AEs are m=0 amd m*=0 amd m=0,0 are the roots

Solutions are given by

T=ce” =c, and X = ¢,X+C, € = C,X+C,
Hence the solution of the PDE is given by
U= XT= ¢, C,X+C,

Or u(x,t) =Ax+B where c;c,=A and ¢ c3-B
Case (ii) let k be positive say k=+p”

AEs are m —¢’p°=0 and m*-p°=0

m= czp2 and m=+p

Solutions are given by

' 2. ' '
T=ce’ " and X =ce™ +ce ™
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Hence the solution of the PDE is given by

u=XT =c,e°P".(c,e™ +c e ™)

Or u(x,t) =ce° Pt(A’e™+Be ™) where ¢;’c,’=A’ and ¢;’c3’=B’
Case (iii): let k be negative say k=-p’

AEs are m+ ¢’p”=0 and m*+p°=0

m=- c¢’p> and m=+ip

solutions are given by

T=ce*" and X =c’,cospx+c,sin px

Hence the solution of the PDE is given by

" 2 " W
u=XT =c,e°"" (c,cos px+c,sin px)

u(x,t)y=e° "1 (A" cos px+B" sin px)

2

1. Solve the Heat equation % =c? Z—zgiven that u(0,t)=0,u(1,0)=0 and u(x,0)= 100x/1

|
Soln: b, _2 IIOOX sin 7% gy — = 220 szinmdx
I 1 I =

X — Nz X o Nz X !

) _200] * COST ) sin ——
" |2 nz/l nz/l 2
0
200 -1 200 -1 " 200 -1 "
b, =——.— lcosnz =- .=
I~ nx Nz Nz

The required solution is obtained by substituting this value of b,

= 200 —1 " wACt oy
Thus u(x,t) = e sin
(*t) nz:; Nz & I
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2
2. Obtain the solution of the heat equation % =c? 2—2 given that u(0,t)=0,u(l,t)and

2Tx

—|n0<x<l
u(x.0) =fwhere f(x =1 |2
— l-x in=<x<I
| 2
|
Soln: n=%f (x)s1n—dx
0
bn=|g ?s' @d j?(l—x)sin@dx
|

0
2

IXs1n—dX+ J (- X)sml—dx
0

2

The required solution is obtained by substituting this value of b,

0 —n*z%c%t
Thus u(x,t) = 81; Z—zsm—e B 1n@
V4 1 N

2
3. Solve the heat equation %J = g—z with the boundary conditions u(0,t)=0,u(l,t)and

u(x,0) =3sin 7 x
Soln: u(X,t) =€ " (A cos PX+B SiN PX).eerrveererreerereneenes M
Consider u(0,t)=0 now 1 becomes
0=e"*(A) thus A=0
Consider u(1,t)=0 using A=0 (1) becomes
0=e""" (Bsinp)

Since B#0,sinp=0or p=n 7
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2

ux,ty=e (Bsinnzx)

- nzﬂzczl

In general u(x,t) = ane sin Nz X

n=1

Consider u(x,0)= 3 sinnzxand we have

3sinnzX =D, sinzx+b, sin 27X +b, sin 37X

Comparing both sides we get b, =3,b, =0,b, =0

We substitute these values in the expanded form and then get
u(x,ty=3e " (sinx)

Various possible solutions of the one dimensional wave equation uy =c2u“ bv the method of
separation of variables.

2
Consider ;—l; =c’ 8_

OX

Let u= XT where X=X(x),T=T(t) be the solution of the PDE

Hence the PDE becomes
o* XT ,0 XT d’T d X
—=¢C — orX—-=c¢ 5
ot OX dt dx
2
Dividing by ¢*XT we have a7 _1dX

T dt? X dx?

Equating both sides to a common constant k we have

2 2
id )z(zk and ZLd T =
X dx cT dt
d’X 9T kT =0
e —-kX =0 and g2 B
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D~k X=0 and D —-c’k T=0

2 2
Where D’ :% in the first equation and D? 23? in the second equation
X

Case(i) : let k=0
AEs are m=0 amd m*=0 amd m=0,0 are the roots

Solutions are given by

T=ce” =c, and X = ¢,X+C, € = C,X+C,
Hence the solution of the PDE is given by

U= XT= ¢, C,X+C,

Or u(x,t) =Ax+B where c;c,=A and c;c;-B
Case (ii) let k be positive say k=+p’

AEs are m —¢*p*=0 and m*-p”=0

m= czp2 and m=+p

Solutions are given by

T=ce° " andX =c,e™ +c,e ™

Hence the solution of the PDE is given by
u=XT =ce° P .(c,e™ +c e ™)

Or u(x,t) =ce° Pt(A’ e +B e~ ™) where ¢;’c,’=A’ and ¢;’¢c3’=B’
Case (iii1): let k be negative say k=-p’

AEs are m+ ¢’p”=0 and m*+p>=0

m=- ¢’p’ and m=+ip

Solutions are given by

" _cpht " " .
T=ce“? and X =c,cospx+cC,sin px
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Hence the solution of the PDE is given by
u=XT =c' e " (c’, cos px+C'; sin px)

ux,t)=e° " (A" cos px+B" sin px)

1. Solve the wave equation utt=c2uXX subject to the conditions u(t,0)=0 ,u(l,t)=0,

a@t_u X,0 =0 and u(x,0) =uesin’(x/I)

nzX n
Soln: u Xt —Zb smicosﬂl—ct

n=1
Consider u(x,0) =uosin’(x/1)

. NxX
u Zb s1nT

ET 2 G . NxX
u, sin’ T > | sin—-
n=1

3 . ,7aXx 1 . 37X 2 . hxX
U, 2 S - —sin=— =2 o Sin——

n=1

3u, . mX . 37X 2 . 27X . 37X
Tsm T——s1n|—=l:11s1n|—+b2 sm|—+b3 sin —

comparing both sides we get

3u —u
b =10, =0 b =—%, b, =0 b;=0.

Thus by substituting these values in the expanded form we get

3u, X mct 37X mct
u(x,t)==—2sin — cos — ——sin —— cos ——
4 I | I

2. Solve the wave equation ug=cuy subject to the conditions u(t,0)=0 ,u(L,t)=0,

a@t_u X,0 =0 when t=0and u(x,0) =f(x)
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Nz X nzct
Soln: u x,t = Zb sin —— cos |
n=1

Consider u(x,0)=f(x) then we have

Consider u(x,0) = Z b, sm@

F(x) = Zb sm@

The series in RHS is regarded as the sine half range Fourier series of f(x) in (0,1) and hence

ﬂ

2 I

= jf (X)sm—dx

I 0

Thus we have the required solution in the form

S 172 nzct
uxt =xh sm—cosT
n=1

DOUBLE INTEGRAL

The double integral of a function f (x, ¥) over a region D in R’ is denoted by “ ¥ (x,'y) dxdy
D

Let f (x, y) be a continuous function in R* defined on a closed rectangle
R={(x,pa<x<Lband ¢c Ly <d)

4
For any fixed x € [a, b] consider the integral Jf(xy)dv

'The value of this integral depends on x and we get a new function of x. This can be integrated

b [ pd \
depends on x and, we get L U’ f (x,y‘)dy:|dx_ This is called an “iterated integral®.
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PROBLEMS:
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Evaluation of a Double Integral by Changing the Order of Integration

Evaluation of a Double Integral by Change of Variables

Applications to Area and Volume
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Triple Integrals:

The treatment of Triple integrals also known as volume integrals in R® is a simple and straight
extension of the ideas in respect of double integrals.

Let f(x,y,z) be continuous and single valued function defined over a region V of space. Let V be
divided into sub regions oV ,dV ....... OV into nparts. Let (X ,¥ ,Z ) be any arbitrary point
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n
within or on the boundary of the sub region 6V, . From the sum s = z f (X5 Yier 2, )OV,
k=1

If as N — oo and the maximum diameter of every.

Sub region approaches zero the sum (1) has a limit then the limit is denoted by ”If (X,y,2)dv
\

This is called the triple integral of f(x,y,z) over the region V.

For the purpose of evolution the above triple integral over the region V can be expressed as an
iterated integral or repeated integral in the form

m‘f (X,Y,z)dxdydz = t]{h(j){mj‘w f(xY, z)dz}dy]dx

al g Ly (xy)

Where {(x,y,z) is continuous in the region V bounded by the surfaces z=z =y/(X, y), Z=¢(X,Y),
y=0(X),y =h(x),x=a,x=b. the above integral indicates the three successive integration to be

performed in the following order, first w.r.t z, keeping x and y as constant then w.r.t y keeping x
as constant and finally w.r.t.x.

Note:

e When an integration is performed w.r.t a variable that variable is eliminated completely
from the remaining integral.

e [fthe limits are not constants the integration should be in the order in which dx, dy, dz is
given in the integral.

e [Evaluation of the integral may be performed in any order if all the limits are constants.

o Iff(x,y,z) =1 then the triple integral gives the volume of the region.

1. Evaluate 1J.zjzjixyfdxdydz
00

1

122 12
Sol : ”jxyzzdxdydz = I Xy
00 00 2

1

N
L 1
[«
<
o
N
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a

2. Evaluate I]‘?(Xz + y2 +27’ dxdydz
0

Sol : 6ﬁei"(x2 +y* +z°)dxdydz = T]'{Xi + YA X+ zzx}adydz
000 00 3 0

aa _a3

- J‘(;[ E y’a+ zza}dydz

3]
]

I

a3 2 2
?+y a+z-a|dy]dz

O'.—'Q’ Oc—‘m

I—l

y a
+2 =+ 7%y | dz
3 v}

0

Il
—

|—|

+

+

QD

N
|—|

o

N

0 3

[a“z a‘z azzﬂa
- + 22y

3 3 3 o

a5 5 5
-2 42

3 3
:a5
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a —-x"-y
j X'y zdxdydz
0

]
0

Sol Izaj 3 j Xy z dz xdy dx
0 0
_}jﬂwfr“”}
= y dx
0 L 2 0
ava -
=[] @ -x’-y)dydx
0
=%Z|'ajx (xya’—x’ y—xy’)dy dx

:l:]_|:xyza2_x3yz_xyz}axdx
2, 2 2 2 o

12

gj(ax+x—2a x*)

0

I x> x* 2a%x*| _a°
—4 26 4}¢i§

4. Evaluate J‘ J‘ J‘ Xyz dxdy dz over the region R enclosed by the coordinate planes and the
R

plane x +y + z=1
Sol: In the given region, z varies fromOto l —x—y

For z-=0, y varies from 0 to 1 — x. For y=0,x varies from 0 to 1.

1 —x1-x=

jﬂxyzdxdydz: I j Ixyzdxdydz
R

x=0y=0 z=0

=LIX{fyB(l—x—y)2}dy}dx
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:%jx{j[(l—x)zy—Z(l—x)y2+ yﬂdy}dx
1 1 201 2_% _ _ 3 l _ 4
_onx{;a—x) (1= =2 A=x)1 =)+ 2 (1-%) }}dx

1 N
=Lj'x(1—x)“dx=L _1=x)
24 24| 30 |

1
720
Change of variable in triple integrals
Computational work can often be reduced while evaluating triple integrals by changing

the variables x, y, z to some new variables u, v, w, which related to x,y,z and which are

such that the

x o
ou ov ow
Jacobian J=M=ﬂ o] ﬂio
o(u,v,w) |ou ov ow
@ a a
ou ov ow
It can be proved that

I Hf (X, y,z)dxdydz

R is the region in which (x,y,z) vary and R* is the corresponding region in which
(u,v,w)vary and ¢(u,v,w) = f x(u,v,w), y(u,v,w),z(u,v,w)
Once the triple integral wrt (x,y,z) is changed to triple integral wrt (u,v,w) by using the

formula(1), the later integral may be evaluated by expressing it in terms of repeated

integrals with appropriate limit of integration
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Triple integral in cylindrical polar coordinates
Suppose (x,y,z) are related to three variables (R, ¢, z) through the the relation
X=Rcos¢,y=Rsing,z = zthenR, ¢, z are called cylindriocal polar coordinates;

In this case,

oX OX OX

R 0p 0
J_00y.D) oy oy oyl
o(R,4,z) |OR 0¢ oz
0z 07 01

R o4 oz

Hence dxdydz has to be changed to R dR d¢ dz

Thus we have
ij (X, Y, z)dxdydz

R
= [[[#(R.¢.2)RdRdgdz

R

R"is the region in which (R,d,z)vary, as (x,y,z) vary in R
#(R,¢,2) = f (Reos ¢, Rsin g, 2)
Triple integral in spherical polar coordinates
Suppose (X,y,z) are related to three variables (r,8,¢) through the relations

X=rsinfcos@,y =rsinfsing,z=rcos@. Then (r,0,¢) are called spherical polar

coordinates.

PROBLEMS:

1) IfR is the region bounded by the planes x=0,y=0,z=0,z=1 and the cylinder X’ + =1
.Evaluate the integral ” j xyzdxdydz by changing it to cylindrical polar coordinates.
R

Sol: Let (R, ¢, z) be cylindrical polar coordinates. In thegiven region, R varies from 0

to 1, ¢ varies from 0 to % and z varies from 0 to 1.

[[[xyzdedydz = [ Lf [ (Reosg)(Rsing)zR dR dp dx
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= £R3dR§sin¢cos¢L 2dz

=l ,[: R3dR{—COSZ¢}2
4

=i£RHR

0

1

16

2) Evaluate Jﬂxyzdxdydz over the positive octant of the sphere by changing it to
R

spherical polar coordinates.
Sol: In the region, r varies from 0 to a, @ varies from 0 to B and ¢ varies from O to.

The relations between Cartesian and spherical polar coordinates are

X=rsinfcos@,y =rsin@sing,z =rcosb.....(1)
Also dxdydz = r’ sin @drd&d ¢

We have X +y>+2° =a’....(2)

Iﬂxyzdxdydz = E:O Jio J:O I sin & cos ¢ sin & sin @r cos Or” sin Odrd 9d ¢

- JZO I’ sin @ cosOsingdrdddg

a.6
=——6 cos —cos0
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MODULE-4
INTEGRAL CALCULUS

Application of double integrals:

Introduction: we now consider the use of double integrals for computing areas of plane and
curved surfaces and volumes, which occur quite in science and engineering.

Computation of plane Areas:

Recall expression
b ¥,(X) X (y)

_[ f(x,y)dA= Hf(x, y)dxdy = j j f(x,y)dydx = I _[ f (x,y)dxdy

a vy (x) cx(®

[dA = [faxdy =bjmf) dydx = | X (jy) AXAY..o....... )
A R

a vy (x) cx
The integral I dA represents the total area of the plane region R over which the iterated integral
A

are taken . Thus (1) may be used to compute the area A. nNote that dx dy is the plane area
element dA in the Cartesian form.

Also I I dxdy = I I rdrd@, rdrd@ is the plane area element in polar form.
R R

Area in Cartesian form

Let the curves AB and CD be y, = f,(x)andy, = f,(X). Let the ordinates AC and BD be x=a and

x=b. So the area enclosed by the two curves and x=a and x=b is ABCD. Let p(x,y) and be
Q(x+ X, y+dy) two neighbouring points, then the area of the small rectangle PQ=6xJy

Y, Y2
Area of the vertical strip = hmz OXSy=0x J.dy

Sy—>0 vy, v,

Since 6 x the width of the strip is constant throughout, if we add all the strips from x=a to x=b
we get

The area ABCD = limi“ yjz'dy =k]‘dxyjz.dy

Sy=>0 a Yi a Y
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by,
Area= j Idxdy

ay

Area in Polar form:

1. Find the area of the ellipse — +g—2 =1 by double integration .
a’
Soln: For the vertical strip PQ, y varies fromy=0to y = 9\/ a’® — x> when the strip is slided
a

from CB to A, x varies from x=0 to x=a

b
7ax

Therefore Area of the ellipse=4 Area of CAB=4 I dedx

x=0  y=0

E\la X
j jdy dx = 4_[ ’yf‘
0

—sin
2 2

:4j E\/az—xzdx:4E
) a a

2
- 4E{a—sin_l 1} LIS
al 2 a

2. Find the area between the parabolas y2=4ax and x* = 4ay

a
xva? — x? +a2 . _l(ﬁﬂ
2

0

N|9’

Z = mb
2

Soln: We have y"=4ax ..................... (1)and x> =4ay.............c....... (2).

Solving (1) and (2) we get the point of intersections (0,0) and (4a,4a) . The shaded portion
in the figure is the required area divide the arc into horizontal strips of width oy

y2

x varies from p, " to Q./4ay and then y varies from O, y=0 to A, y=4a .
a

Therefore the required area is

a JHay Jaay
jdy 4jydx: j'dy X jv
0 y2 ¥

4a 4a
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4a

3
3 12a
32, 16, 16,
3 3 3

Computation of surface area (using double integral):
The double integral can made use in evaluating the surface area of a surface.

Consider a surface S in space .let the equation of the surface S be z=f(x,y) . it can be that surface

area of this surface is

1

Given by s—ﬂ[ﬂ(az) +( J]zdxdy

Where A the region representing the projection of S on the xy-plane.
Note that (x,y)vary over A as (x,y,z) vary over S.

Similarly if B and C projection of S on the yz-plane and zx - plane respectively , then

_ ) .
1+(§) +(@) dydz
0z oy

1
_ 1
1+(azj +(gj dzdx
0z OX

and

7 »
Il I
> >

1) Find the surface area of the sphere x’+y*+z’=a’.

Soln: the required surface arc is twice the surface are of the upper part of the given sphere,
whose equation is

1

z=a*-x*-y* 2 )0
1

this,gives,gz a’—-x’—y> 2 -2x
OX
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—X

2

N | —

a’—-x’—y

y

L oz
similarly, — = :

az_xz_yz 2

(82}2 (azj a’
S = | = == 3
oX OX a —-x -y

hence,the, required, surface,area, is
1

5= 2!\]{“(%}2 +(2§) ] dxdy = ZH{X—Z_y}ldxdy

Where A the projection of the sphere on the xy-plane . we note that this projication is the area
bounded by circle x*+y*=a’.hence in A ,0 varies from 0to27

And r varies from Oto a, where (r, ©) are the polar coordinates. put x=cos 0 ,y=sin 0 dxdy=rdrd 0

rdrdé = 22.7fd9 X E]

27 a
a r
S.s5=2 —_— —————rdr
e;[of;[n/az—rz sva’-r?
2 a 2z
=2a'[d9—%va2—r2 g:ZaIdeg}Zaz [ﬂ! :4726.2
0 0
2) Find the surface area of the portion of the cylinder x’*+z’=a’ which lies inside the
cylinder x*+y*+=a’.

Soln: Let s; be the cylinder x*+7*=a’ and s, be the cylinder x*+7°=a’ for the cylinder
0z X 0z

Slz—:——__()
OX z oy
2 2 2 2 2
sothat1+(azj |2 =1+X_2+0:Z +2X _ 2a :
X oy z z a’—x

The required surface area is twice the surface area of the upper part of the cylinder S; which lies
inside the cylinder x*+y*=a’. Hence the required surface area is

1

s_zﬂ{n(azj +( J]sz 2ﬂﬁd/x
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Where A is the projection of the cylinder S; on the x y plane that llies with in the cylinder

S,:x*+y’=a’. In Ax varies from —a toa and for each x,y varies from — Ja? —x’tova® - x2

a’-x?

i i a
TT 2><=‘—[a y=—\/;[? va’ —x?
[ﬂz dx
I\/a2 -x’ &x

dydx

¥ 1
g N

=2a
an —x’
= 4a jdx=4a[1 =4al- €a_Esa’

Volume underneath a surface:

Let Z=(x,y)be the equation of the surface S. let P be a point on the surface S.let A denote the
orthogonal projection of S on the xy- plane . divide it into area elements by drawing thre lines
parallel to the axes of x and y on the elements Oxoy as base ,erect a cylinder having generators

parallel to QZ and meeting the surface S in an element of area 0s .the volume underneath the
surface bounded by S, its projection A on Xy plane and the cylinder with generator through the
boundary curve of A on the xy plane and parallel to OZ is given by,

V= Hf &y dxdy = Hdedy

y> 7
b_2+_2:l

1) Find the volume of the elllps01d —+
a’ c

Sol: Let S denote the surface of the ellipsoid above the xy-plane .the equation of this surface

X2 y2 Z2

—+ 5+ =1€

a’ b? c? >

is
2 2

1
X"y 2 -~
or,z=cll-—-=—| =f&
S L) ey

The volume of the region bounded by this surface and the xy-plane gives the volume v,of the

upper half of the full ellipsoid .this volume is given byv, = ﬂ €, yﬂxdy
A

Where A is the area of the projection of S on the xy plane .
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2 2

Note that A is the area bounded by the ellipse X—2 + g—z =1
a

The volume of the full ellipsoid is 2v;.thus the required volume is v = 2.% mabc = ﬂﬂabc

Volume of revolution using double integrals:

Let y=f(x) be a simples closed plane curves enclosing an area A. suppose this curve is revolved
about the x-axis. Then it can be proved that the volume of the solid generated is given by the
formula .

V= ”27zydA= sznydxdy
A

In polar form this formula becomes v = ”rz sin&d &dr
A

1) Find the volume generated by the revolution of the cardioids r =a (1+cos0) about the
intial line.

Sol: The given cardioids is symmetrical about the initial line 6=0.therfore the volume generated
by revolving the upper part of the curve about the initial line is same as the volume
generated by revolving the whole the curve .for the upper part of the curve 0 varies form 0
to m and for each 0 , r varies from 0 to a(l+cos0),therefore the required volume is

7 a(l+cos )
E j Izmzsinadrde
=0 r=0

3 aqicosd )
| ao

=2r Isin@ r
; 3

0

3z 3
_2m j(+c039:sin9d9

0

27za3[(+0056?:4]r 8

=—7a
3 4 3

0
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Computation of volume by triple integrals:

Recall the expression,

bl h€N &y
[f&y.z0v=[[[f &y.zaxdydz= || [{ [&y.z0z}dy]|dx
v R al g€ v &y)

As a particular case ,where f(x,y,z)=1,this expression becomes

jdv = jﬂ dxdydz= t]‘hfjmj‘ij]zdydx ............................. (1)
v R a g€ P&y

The integral Jdv represents the volume V of the region R. thus expression (1)may be used to

'

compute V.

If(x,y,z) are changed to (u,v,w)we obtained the following expression for the volume,

fdv= [[[dxdydz= [[[ jdudvdw.......................... 2)

Taking (u,v,w)= (R,0,z) in (2)
We obtained Idv= Hf RdRd¢dz ................ (3)  an expression for volume in terms of
\% R
cylindrical polar coordinates.
Similarly Jdv= _Ujrz sinAdrdéd¢g an expression for volume in terms of spherical polar
v R

coordinates.
PROBLEMS:

1) Find the volume common to the cylinders xz+y2=a2 and x*+z’=a’

Soln: In the given region z varies from —+a’-x> to ++va’—x*> and y varies from

—+va®—x* to ++a*—x* .for z=0, y=0 x varies from —a to a

Therefore, required volume is
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:af ajx z dydx
—a_Ja2— a2

_ ? ajx 2% — X dydx
—a_Ja22=

= 2_];[\/a —x? y]_:;_ dx

a X3 a
:4_[ a’ —x’ dx=4[a2x——}
A 31,

=4 a3—a—3 — —a3+a—3

i 3 3
_4| o220 |_l6a’
3 4

2) Find the volume bounded by the cylinder X?+Y?=4 and the planes y+z=3 and z=0
Soln: Here z varies from 0 to 3-y, y varies from () to () and x varies from -2 to 2

.. Required volume
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2

2
S BE b =4 3 faox +——— |dx
> 2

2 2
=6 '[\/4— X2 dx = 6[3\/4— X +%sin_1 5}
-2 -2

— 6| 2sin”' 2~ 2sin (——J ~12 z+ﬁ}=12ﬂ
2 2 2 2

Curvilinear coordinates:

Introduction: the cartesian co-ordinate system is not always convenient to solve all sorts of
problems. Many a time we come across a problem having certain symmetries which decide the
choice of a co ordinates systems .our experience with the cylindrical and spherical polar co-
ordinates systems places us in a good position to analyse general co-ordinates systems or
curvilinear coordinates. Any suitable set of three curved surface can be used as reference surface
and their intersection as the reference axes. Such a system is called curvilinear system.

Definition:

The position of a point P(x,y,z)in Cartesian co-ordinates system is determined by intersection of
three mutually perpendicular planes x=k;, y=k», and z=k 5 where k; (i=1,2,3)

Are constants in curvilinear system, the axes will in general be curved. Let us the denote the
curved coordinate axis by and respectively.

It should be noted that axis is the intersection of two surfaces u;= constant and u,=constant and
SO on.

Cartesian coordinates (X,y,z) are related to (u;uus) by the relations which can be expressed as
x=X(u1,u2,u3); y=y(u;uzu3): z= z(u; Up u3)....... (1)

Equation (1) gives the transformation equation from 1 coordinates system to another.

The inverse transformation equation can be written as u;= u; (x,y,z), U= Uy (X,y,z), U3= U3

(1) And (2) are called transformation of coordinates.
Each point p(x,y,z) in space determine a unique triplet of numbers (u; us us) and conversely to
each such triplet there is a unique point in space. The trial (u;uyu;) are called curvilinear

coordinates of the point p.
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Unit vectors and scale factors:

Let F=x + Y]+ zk be the position vector of the point p. then the set of equation x=x(uj uz u3),

y=y(u;.u.u3),z=2(u; Us,u3) can be written as ¥ =T ,,U,, U, j

—

. . or
A tangent vector to the u curve at p (for which u and u are constant ) is —

1
The unit tangent vector in this direction is

o ar
g, = 8qu1 _ oy,
or h,
oy,
I_.’
So that where h, = o
ul
he =
au,

Similarly if €,ande, and are unit tangent vector to the u and u curves at p respectively.
Than

oo
G, ou, _ ou,
ar| h,
ou,
So that h,é, _a
ou,
g r
And h3é3:6—r( where h, = 0 )
ou, 3

The quantities h;, hy and h3 are called scale factors. The unit vectors are in the directions of
increasing u;, u2, and usz respectively.

Relation between base vectors and normal vectors:

or . or . or .
—=hé;—=h¢g; =hg,;
aul hIl U2 272 au3 h33
We have: R N R
lor . 1 or 1 or
=>6=——:6=——
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_ 1| oxa~ oy . oOF »
g, =— I+— ]+
h,{ou, 0du,” oau,
F=xi+yj+zk
_« lox .~ 1 0x _~ 10X
gl=——361l=——;6l=——
h, ou, h, du, h, ou,
e 1 1 P 0
, ou h, ou, h, ou,
ekl gp-l g Loz
h, ou, h, du, h, ou,
Elementary arc length:
Let r=r u,u,,u,
r r r
mdr =gy + gy, + Ly,

ou, ou, ou,
l.e; dr =€ hdu, +€é,h,du, +é;h,du,

If ds represents the differential arc distance between two neighbouring points

¢,,u,,u, and@, +du,,u, +du,,u, +du,

then,,,ds® = dr.dr = € h,du, + é,h,du, + é;h,du, € h,du, +é,h,du, +é,h,du,
2 2 2 2 2 2 2

or,,,,,ds” =h du; + h,du; +h;du;

or
On the curve u; cure u, and u3 are constants .. du, =du, =0..ds=h,du, = a—du1
1

Similarly ds = h,du,,ds = h,du,
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Elementary volume element:

Let p be one of the vertices of an infinitesimal parallelepiped. The length of the edges of the
parallelepiped are hdu,,h,du,,h;du,

Volume of the parallelepiped =dv=h; h; hs du; du, du; is called the volume element.
dv= [(é,h,du,)(é,h,du,)]xé,h,du,

0 Y,2)

= dU1 duz dLI3
o(u,,u,,u;)

- ] Xyz du; du, dus
ulu2u3

Jacobian is positive since each h; hy, h; of are positive.

Expression for Vg, divF,curlFandv>¢ in orthogonal curvilinear coordinates:

Suppose the transformations from Cartesian coordinates X,y,z to curvilinear coordinates U,,U,,U,
be x=f(u,,u,,u,), y=g(u,,u,,u,), z=h(u,,u,,U,) where f,g,;h are single valued function with

continuous first partial derivatives in some given region. The condition for the function f,g,h to
be independent is if the jacobian

OX OXx  OX
ou, ou, au,
o(u,,u,,u,) [ou, ou, Ou,
oz o071 o1
ou, ou, ou,

#0

When this condition is satisfied, U,,U,,U, can be solved as single valued functions odf x, y and z

with continuous partial derivatives of the first order.

Let p be a point with position vector 6p = Xi + yj + zk in the Cartesian form. The change of

: ~ . or or or
coordinates to U,,U,,U; makes I a function of U,,U,,U,. The vectors , , are along
ou, ou, ou,
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tangent to coordinate curves U, =C,,U, =C,,U; =C;. Let &, €,, € denote unit vector along

these tangents. Then o _ éh, or _ é,h, a_l’ =é,h,
ou, au, ou,
Where h=20 | h= T b= 90
au, au,’ ou,

If &, é,, é, aresuchthat €. é,=0, €,.6,=0, é,. =0

A A

Then the curvilinear coordinates will be orthogonal and é =€, x €,,6,=€,x6 €,=6 x§,

Now F=F (U;,U,,u;)=dr —a—rdu + o du, + 6—rdu3
1 2 u3

Gradient in orthogonal curvilinear coordinates:

Let d(x,y,z) be a scalar point function in orthogonal curvilinear coordinates.

letgradg = g€, + #€, + &, whereg, @,,d; are functions of U, U,,U,

d¢ = 6¢ du, + a¢ —du, +%du3 ......... (D
ou, 5 U,

dr = € h,du, +é,h,du, +é,h,du; _
alsodg = gradg - dr = €€, + 4,6, + 4,6, - € h,du, +¢é,h,du, +é,h,du,

l.e,d¢g = ¢,hdu, +¢,h,du, +¢,h.du,................ (2)
. ¢ ¢ ¢
comparing(l)....and....(2),wehaveg h, = ——,¢4,h, = ——,¢.h, = ——
p g() ( ) ¢1 1 aul ¢2 2 auz ¢3 3 a \
1 0¢ . 1 8¢ 1 8¢
LY =——2~8,0, = ,h, =
¢l 1 aul 1 ¢2 h a 2 ¢3 h au 3
1 8¢ 1 dp L0
s.gradp=Vp=——dué, + du,€, + ———du,€, . .3
grade 4 au, h2 au, h3 au, 33 (3)
80,890,890 (4)
h, éu, h, au2 h, ou,
s .
from.(3)Vu, = - VU, =—2,Vu, == ... 5
(3)Vu, h1 h, o Y T (5)

here.Vu,,Vu,,Vu,
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Are vectors along normal to the coordinates surfaces u;=c;,u;=c,,u3=c3

é 0 é, 0 2
Using (4) in (3)we get V = VU, —la +Vu, h—za +Vu
2 2

Expression for divergence of a vector functions in orthogonal curvilinear
coordinates.

—

Let f =u,,U,,U; be a vector point function such that f = f,€ + f,€, + f,€, where f,£,,f; are

components T along €,,€,,8, respectively.

f=V.-f=V.(f)+V-(£,6,)+V-(fé,)
consider,,V-(f,é,)=V-(fé, xé,)=V-(fh,h,Vu, xVu,)(using....(4))
SV (f,6)=V-(fhh) (Vu, xVu,)+ f,h,h,V-(Vu, xVu,)

(Using)V -(¢gA)=Vg-A+¢V-A)

also.VxVu, =0=.VxVu,since..curl. grad¢=0
V.(f,€)=V-(fh,h,).(Vu,xVu,)=V.(fh,h,). hh3 from(5)

273

é
=V ().

2°73

1 0
—(f.h,h
N NETMALAN

1 0
——(f,h;h
o 2u ()

10
—(f;hh
hh,h, 8u3( sMfz)

SV (F,6)=

similarlyV - (fé,)=

V-(f]é3):

=1
Vi = f.h,h,)+——(f,h;h)+——(f,hh
hhh6( )a( )63(312)}

Expression for curlF in orthogonal curvilinear coordinates
Let F = (U;,U,,U;) be a vector point function such that f= f.e +f,e +fé
curlF =curl(f,6,) +curl(f,&,) +curl(f,é,)

Consider curl(f,€)=curl(fhVu,)=fhcurl(Vu,)+ gradfh xVu,
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=grad f h xVu,

1 0 1 0 1 0 é
=[——(fh)é + ——(fh)é, + ———(fh)E,]xLusing(3)and(5)
hou """ hyou, 7 hyau, T
| (mjeh: — (e
h h h auz 171 3'73
similarly
A 0 A
curl(fzez)_ { —(f,h,))}é;h, {au (fzhz)}elhl}
3
. 0 . 0 .
curl(f3e3) |: 6_ f h3)}e|h1 _{a(f3h3)}ezh2:|
1

{ (f,h,)- <fh)}eh+{a(flhl)—i(uhn}ézhz
ou, ou,

curlf = —!
hlh2h3 A
_+ ﬁ_m(fth)_E(flhl) e3h3 |
é\lhl 2h2 é3h3
- 1 0 0 o | . . o .
Thus curlf = — —— ——| is the expression for curlf in orthogonal curvilinear
h,h,h, [ou,  du, u,
f,.h,  f,h,  f.h,
coordinates.

Expression for V’¢ in orthogonal curvilinear coordinates

Let ¢ = @(U,,U,,U;) be a scalar function of uy,uy,u;
We know

10 10, 10,
h, ou, h, ou, h, ou,

vig-v| LW 100, 100,
h, ou, h, ou, h, ou,

Vi - 1 | 0 [hh op N o (hh, o¢ N o [ h,h o¢p
h,h,hy | ou, { h ou, ) ou,\ h, ou,) ou,{ h; odu,

This is the expression for Vzgo in orthogonal curvilinear coordinates.

Vo
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BETA AND GAMMA FUNCTIONS

Definitions

Properties of Beta and Gamma Functions
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Relationship between Beta and Gamma Functions
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Sol:
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Specialization to Cartesian coordinates:

For Cartesian system, we have U, =X,U, =Yy,u, =2;¢, =1,6, = j,6, =kand h =h, =h, =1
The elementary arc length is given by ds® = dx* +dy* +dz”

dA = dxdy,dA, =dydz,dA, = dzdX the elementary volume element is given by dv = dxdydz
Specialization to cylindrical Polar coordinates:

In this case U, = p,U, =¢ U, =Z

Also x=pcosg,y = psing,z=z.The unit vectors €,,,,8; are denoted by €,,€,,€, respectively
in this system.

— — —

Let r= pcos¢f+psin¢j+2l€ :>a—r = cos¢|p+sin¢j;a—r = —psin¢f+pcos¢j;a—r =k
op o¢ oz
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or

op

or

op

The scalar factors are given by h, = =Lh, = =Lh, = Z—r =1,
Z

The elementary arc length is given by (ds)* = h?(du,)* +h2(du,)* + h?(du,)?

i.e; (ds)” =(dp)* + p*(dg)’ +(dz)’
The volume element dv is given by dv =hh,h,du,du,du; i.e;dv = pd pd¢dz

Show that the cylindrical coordinate system is orthogonal curvilinear
coordinate system

Proof: Let F = pcosdi + psingj+zK be the position vector of any point P. If €,,€,,€, are the

unit vectors at P in the direction of the tangents to p,¢ and z curves respectively, then we have

. o . o . or
heé,=—.hg,=— he, =—
op o¢ oz

For cylindrical coordinate system h =Lh, = p,h, =1

. o . lor . o . T YA . PR
e =—.,6,=——,6,=—=¢€ =Cos¢l +sin¢J;e, =—singl +cos¢J,€ =k
iy g = & cosdl +sing ;8 ——singi +cos ]

Now €,-€, =—cosgsing+singcosg =0;€,-€, =0and e -€ =0

Hence the unit vectors € s §¢, €, are mutually perpendicular, which shows that the cylindrical

polar coordinate system is orthogonal curvilinear coordinate system.
Specialization to spherical Polar coordinates

In this case U, =r,u, =6,u, =@. Alsox =rsinfcos g,y =rsinfcos@,z =rcos 6. In this system
unit vectors €,,€,,€; are denoted by € ,€;,6, respectively. These unit vectots are extended

respectively in the directions of r increasing, € increasing and @ increasing.

Let T be the position vector of the point P. Then
F = (rsin@cosg)i +(rsin@sing)  +(r cos O)k

— —

Z—r :sin¢cos¢f+sin6’sin¢j+cos@l€;§—; =rcosfcosdi + rcos@sin¢j—rsin6’l€
r

103



—

S_r = —rsin@singl +rsinfcosgj

o
00

The scalar factors are h, = o =1,h, = =r,h, = ‘g‘ =rsind

5

The elementary arc length is given by (ds)* = h?(du,)” +h3(du,)” +h? (du,)’
i.e (ds)’ =(dr)* +r*p*(d9)* +r’sin’ O(dg)’
The volume element is given by dv =hh,h,du,du,du; i.;dv =r’sin&drdod ¢

Show that the spherical coordinate system is orthogonal curvilinear coordinate system and

also prove that (g ,€,,€,) form a right handed basis.
Proof: We have for spherical Polar coordinate system

F = (rsin@cos )i +(rsinOsing) j +(r cos )k

Let €,,6,,€, be the base vectors at P in the directions of the tangents to r,8,¢ curves respectively

then we have

or or or

6 =—;=1,hé =—=r,hé =—

hll ar 272 69 3v3 a¢
or or or

iehé =—;=1,hé =—=r,hé =—
hlr a 270 89 3¢ a¢

We know that for spherical polar coordinate the scalar factors hy =1,h, =2,h, =rsiné

or ~ 2 " or
A — — 1 1 A r a . f . ~
.6, =— =sinfcosgl +sin@sin g ] +cos 6K 16, =— =rcosfcosdi +rcosOsingj —rsin oK

rsinge, =-r sin@singi +rsin@cos ¢ |

Now & -é, =sinf@cosf(cos’ ¢+sin @)—sinfcosd =0
€,€, =—cosfcosgsing+costcosgsing =0
€, €

6, -6, =—sinfcosgsing +sinfcosgsing =0
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This shows that € ,€, and €, are mutually perpendicular. Hence spherical polar coordinates are

also orthogonal curvilinear coordinates.

o . A
1

i K
Further € x€é, =|sinfcos¢ sinfsing cosd =—sin¢f+cos¢j=é¢

cosfcosg cosfsing —sinf

Similarly we can show that ,x€é, =€ and é,xé, =€, which shows that (€,,&,,€,) form a right
handed basis.

Coordinate transformation with a change of basis:

To express the base vectors ey e;,e3 in terms of i, j, k

We can use from matrix algebra, if Y=AX then X=A"'Y provided A is non singular.

1) Cylindrical polar coordinates (e, €. €,)

We have for cylindrical coordinate system
€p= CosQIt+singj, €,=-sin@j +cose1; e, ~k............ (1)

This gives the transformation of the base vectors in terms of (i,j,k)

e, cosg sing Of]|i
1) Can be written in matrix form | e, |=|—sing cosp 0]] ]
e, 0 0 1]k
i cosg —sing 0]|e,
On inverting ,we get | J |=|sing cosp  Offe, |.........coonnnn. (a)
k 0 0 1{]e,

1=CosQe,-SINPe, ; j=sinQe,+ cospe, k=e,
This gives the transformation of (i,j,k) in terms of the base vectors(e,,e¢,€,).

2) Spherical polar coordinates:

We have e, = sinfcos@i + sinfsin@j + cosbk
ep= cosBcospi + cosBsingj + sinBk

€,= -singi + cosQj
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This gives the transformation of the base vectors in terms of (i,j,k)

e, sinfcos¢ sinfsing cosd || i
Writing in matrix form | e, |= |sin@sing cosfsing cose || ]
CH —sing cosQ 0 k

Inverting the coefficient matrix,

i sinfcos¢ cosdcosgp —sing||e
we get| ] |[=|sin@sing cosOsing cos@ ||€,|........... (b)
k cost —siné 0 e

I sinfcos¢g cosfcosg —sing
j=sinfsing cosfsing cos@
k cosd —siné 0

This gives the transformation of (i,j,k) in terms of the base vectors (e; g €q).

3) Relation between cylindrical and spherical coordinates

Now from (a) and (b)
cosgp —sing 0]|e, sinfdcos¢g cosfcosg —sing ||e,
sing cosp O||le, |=|sinfsing cosfsing cosg ||e,

0 0 l]le, cosd —sinf 0 e,
Each of the matrices are invertible, therefore we get
_ep_ [cosp —sing 0| [sinfcosp cosOcosg —singl|e,
e, |=|sing cosp 0|=|sinfsing cosfOsing cosyp ||¢€,
e, | O 0 1] cosd —siné 0 e,
_ep_ [sin@ cos® 0]]e,
e, |=| O 0 1||e,
(e, | |cosd —sind 0]|e,

e, sinfcos¢g sinfdsing cosf ||cosgp —sing O]|e

P

similarly| e, |=| sinfsing cosfsing cosg||sing cosp O]fe,

e, —sing cosQ 0 0 0 l]le,
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sind@ 0 cosd e,

=|cosd 0 -—sind e,

0 1 0 e,
This gives e, =sin@ e, +cosd e,,
€,=cos® €, —sind e, and e,=¢€,

These two results give us the relation between cylindrical and spherical coordinates bases and
vice versa.

PROBLEMS:
1. Express vector f=2yi-zj+3xKk in cylindrical coordinates and find f, f, f,.
Sol:The relation between the Cartesian and cylindrical coordinates given by
X=pcosQ,y=psing,z=z
I=cos@e,-singe, ; j=sine,+ cosee, k=e,.
We have f=2yi-zj+3xk
= 2y(cospe, - singe,) - z(sinpe, + cospe,) + 3x(e,)
f= 2psing (cospe, - singe,) - z(sinpe, + cospe,) + 3 pcose (e,)
f= (2psin@cose - zsing)e, - (2psin2 ¢ + zcosp)e, + 3pcosee,
Therefore

f, 2psin@cosy - zsing ; f, - 2psin’ @ + zcos@ ; £, - 3pcose.

2) Express the vector f=zi-2xj+yk in terms of spherical polar coordinates and find f;, fo, f,,

Sol: In spherical coordinates, we have

e = Sinfcosei + sinBsingj + cosbk ......... (1)
ep = CosOcospi + cosOsingj - sinbk ......... (2)
€p = -SInQi + cosQj ......... 3).

The relation between Cartesian and spherical coordinates
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MODULE -5
LAPLACE TRANSFORM

INTRODUCTION

= Laplace transform is an integral transform employed in solving physical problems.

= Many physical problems when analysed assumes the form of a differential equation

subjected to a set of initial conditions or boundary conditions.

= By initial conditions we mean that the conditions on the dependent variable are specified

at a single value of the independent variable.

= [f the conditions of the dependent variable are specified at two different values of the

independent variable, the conditions are called boundary conditions.
= The problem with initial conditions is referred to as the Initial value problem.

= The problem with boundary conditions is referred to as the Boundary value problem.

2
d
dx’ + d_i + Y = X with conditions y(0) = y’

Example 1: The problem of solving the equation

(0) =1 is an initial value problem.

2

dle + 2% + Yy =cosX with y(1)=1,

Example 2: The problem of solving the equation 3
y(2)=3 is called Boundary value problem.

Laplace transform is essentially employed to solve initial value problems. This technique
is of great utility in applications dealing with mechanical systems and electric circuits.
Besides the technique may also be employed to find certain integral values also. The

transform i1s named after the French Mathematician P.S. de’ Laplace (1749 — 1827).

The subject is divided into the following sub topics.
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LAPLACE TRANSFORMS

Definition and Transforms of Convolution Inverse Solution of
Properties some functions theorem transforms differential
equations
Definition:

Let f(t) be a real-valued function defined for all t > 0 and s be a parameter, real or

complex. Suppose the integral Je_St f(O)dt exists (converges). Then this integral is called the
0
Laplace transform of f(t) and is denoted by L[f{(t)].

Thus, L[f(t)] = j e f(t)dt (1)
0
We note that the value of the integral on the right hand side of (1) depends on s. Hence
L[f(t)] is a function of s denoted by F(s) or f(S).
Thus, L[f(t)] = F(s) (2)

Consider relation (2). Here f{(t) is called the Inverse Laplace transform of F(s) and is
denoted by L™ [F(s)].

Thus, L' [E(s)] = f(t) (3)
Suppose f(t) is defined as follows :
- fi(t), 0<t<a
flty=[fa(t), a<t<b

f3(t), t>b

Note that f(t) is piecewise conthuous. The Laplace transform of f(t) is defined as
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o0

L] = [e f(b)

0
a b 0
~ fef(dt+ e f,(0dt+ [e f, (bt
0 a b

NOTE: In a practical situation, the variable t represents the time and s represents frequency.
Hence the Laplace transform converts the time domain into the frequency domain.

Basic properties

The following are some basic properties of Laplace transforms:

1. Linearity property: For any two functions f(t) and ¢(t) (whose Laplace transforms exist)

and any two constants a and b, we have
L [af(t) + b ¢(t)] =a L{f(O] + b L[¢(1)]

Proof :- By definition, we have
L{af () +bo(0)] = [ BF®)+bgt)dt = afeft)dt+b e p(tydt
0 0 0

=a L[f(t)] + b L[¢(V)]
This is the desired property.
In particular, for a=b=1, we have
LLf(t)+ ¢®]= L[]+ L{¢(1)]
and fora=-b =1, we have L [ f(t) - ¢(t)]= L[f(t) ]- L[$(1)]

1

2. Change of scale property: If L L[f(t)] = F(s), then L[f(at)] = 2

S .

F —), where ais a
a

positive constant.

Proof: - By definition, we have

L[f(at)] = f e f (at)dt (1)
0

110



Let us set at = x. Then expression (1) becomes,

S

L f(at) = éwje(ajx f (x)dx
0

This is the desired property.

3. Shifting property: - Let a be any real constant. Then

L [¢“f (t)] = F(s-a)

Proof :- By definition, we have

L [e"f (t)] = wfe‘“ RIOE
0

_ [e® f(tydt
0

= F(s-a)

This is the desired property. Here we note that the Laplace transform of e f(t) can be written
down directly by changing s to s-a in the Laplace transform of f{t).

LAPLACE TRANSFORMS OF STANDARD FUNCTIONS

1. Let a be a constant. Then

—st 4 at _ —(s-a)t
L[(e™)] - je e’ dt = J'e dt
0 0

g(s-a)t ‘w_ 1
T —(s-a), s-a' °7°

Thus,
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1

L[(e")] = —

S—a

In particular, when a=0, we get

L=, s>0
S

By inversion fo

2. L(cosh at) = L(

lOO

2

Let s>Ja]. Then

L(coshat) = —

rmula, we have

L—IL:eat L_ll:eat
S—a S

eat_'_eat) l"o
2 S 2,

J‘l—(s—a)t _|_e—(s+a)tdt_

0

5

+

1 e—(s—a)t e—(s+a)t
—(s—a) —(s+a)

2

S

Thus, L (cosh at) = 32—2 , S>|a

and so

A s
L (mj = coshat

eat
3. L (sinh at) = L(

Thus,

|

o]

0

_e—at B a
2 - 2_ 2 S>|a|
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a
L (sinh at) = 82 —3.2 , S>|a

and so,
L‘l( 1 j_ sinh at
s’ —a’ a

4. L (sin at) = j e ¥ sinat g
0

Here we suppose that s > 0 and then integrate by using the formula

_[eax sinbxdx = ﬁ fsinbx —bcosbx

Thus,

a
L (sinh at) = , $>0
A

and so

Ll[ 1 j:sinhat

a

5.L (cos at) = J‘e_SI cosatdt
0

Here we suppose that s>0 and integrate by using the formula

eax

IeaxcoszdX= ——— hcosbx+bsinbx_
a~+b -
S
Thus, L(cosat)= "> 5, s>0
( ) s +al
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S
-
and so L > 5 = cosat

6. Let n be a constant, which is a non-negative real number or a negative non-integer. Then

=stgn
Ley- [etndt
0

Lets>0andsetst=x, then

L") = ?ex(ijn ax_ | wje‘xx”dx
0 0

S S Sn+1

XN
The integral _[e x"dx 1s called gamma function of (n+1) denoted by I'(n+1). Thus
0

r(n+1)

n+1
S

L(t") =

In particular, if n is a non-negative integer then I'(N41)=n!. Hence

n!
Sn+1

L(t") =

and so

L1t "
g+l a r'(n+1) or H as the case may be

Application of shifting property:-

The shifting property is
If L f(t) = F(s), then L [e"f(t)] = F(s-a)

Application of this property leads to the following results :
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. L(e* coshbt) = [[(coshbt) ], =( 5

Thus,
N o s-a
L(e“coshbt) = (S—a)2 _p?
and
|_‘1( S;Za o =e* coshbt
S—a) —
L at nhbt :L
. (e S1 ) (S_a)z_bZ
and
1 )
|_—1( o =e* sinh bt
S—a) —
S—a
L(e® cosht) =
K ) (s—a)’ +b?
and
-1 S—a at
L o 4D =e" cosht
L(e* sinbt) = b2 >
: (s—a) -b
and
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4, 1 _ e*sinbt
(s—a)’ —b? b

L(e™t") = I'(n+1) n!

5. - n+l - or n+l as the case may be
(s—a) (s—a)
Hence
L—l 1 eatt " n'

(S _ a) el r(n N 1) or (s— a)n+1 as the case may be
Examples :-
1. Find L[f(t)] given f(t)= t, P<t<3
4, t>3
Here

0

3 @
L[f(t)]= Ie‘Stf(t)dtz _[e‘S‘tdtJr J.4e—stdt
0 3

0
Integrating the terms on the RHS, we get

1, 1 .
L[f(t)]zge3 +S—2(1—e3)

This is the desired result.
2. Find L[f(t)] given L[f(t)]=  sin2t, 0<t< &
{ 0, t>mn
Here

L[f(t)] = Ie_St f(t)dt + Ie_St f (t)dt - _[e_St sin 2tdt
0 V4

0
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T

4ssin2t - ZCosztj] 2 I_e—ﬂs_
0 52+4 -

—St

s’ +4

This is the desired result.

3. Evaluate: (1) L(sin3t sin4t)
(i) L(cos® 4t)
(iii) L(sin’2t)

(1) Here L(sin3t sindt) = L [%(cost —cos7t)]

% I_ (cost) — L(cos7t):, by using linearity property

{ } 24s
s2+1 s2+49| (s?+1)(s*+49)

(i1) Here

1 11 S
L(cos’4t) = L| =(1+cos8t) |=—| -+
( ) {2( )} 2{3 sz+64}

(i11)) We have
.3 . 1 . . ™~
sin° @ = 2 €sind —sin30
For 6=2t, we get
. 3 1, . N
sin’ 2t = " €sin2t —sin6t

so that

L(sin’ 2t) = l{

6 6 ] 48
41 s +4 s +36

T (S? +4)(s2 +36)

This is the desired result.
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4. Find L(cost cos2t cos3t)
Here cos2t cos3t= %[cosSt + cost]
so that

1
cost cos2t cos3t = 5 [cos 5t cost +cos’ t]

= %[cos6t +cos4t +1+cos 2t]

Thus L(cost cos2t cos3t) = 1 > > += S +l+ 25
4[s°+36 s +16 s s +4

5.Find L(cosh2t)

We have

1+ cosh28
2

cosh’@ =

For 6 = 2t, we get

Thus,

11 S
L(cosh’2t)=—| —+
( ) 2[5 s’ 16

6. Evaluate (i) L(vt) (i) L %) (iii) L)

r(n+1)

n+1
S

We have L(t") =

(i) For n= %, we get
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F(1+1)

L= —25
S
Since I'(n+1)=nl'(n), we have I l-1-1 :ll" 1 :ﬁ
2 2 (2 2
Thus, L(ﬁ):i’;
2s72

(i) Forn = -% , we get
Lt 2) =

)

(ii1) Forn = —%, we get

1
I -—=
SN ( 2)_—2\/2_
Lt 7?)=— 2= o ns
i o

7. Evaluate: (i) L(t) (i) L(t)

We have,
n n!
L ()= o

(1) Forn =2, we get

202
FOTSES

(i1) For n=3, we get
5, 36
O ey

8. Find L [e™' (2cos5t — 3sin5t)]
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Given
2L (™' cos5t) — 3L(e™" sin5t)

., €+3C 15
(s+3)°+25 (s+3)*+25

25-9

= —————— , onsimplification
S°+6s+34

9. Find L [coshat sinhat]

, by using shifting property

at | n-at
¢ e |
Here L [coshat sinat] = L T‘Sln at
2| (s—a)y’+a> (s+a) +a’
a(s’> +2a%)

T(s—a)+a’[[(s+a)+a’]

10. Find L (cosht sin’ 2t)

I

Given

1

3sin2t —sin 6t
4

et +e
2

)

1

6 6 6

, on simplification

é - L€sin2t —L(e'sin6t) +3L(e " sin2t) — L(e ' sin6t) |

6

8

|

3

1 1 1

—_ + —_
(s=1)’+4 (s=1°+36 (s+1)*+4 (s+1)>+36

|

|

— + —
4] (s—12+4 (s—17+36 (s+1)+24
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_5
11. Find L(e™*t 5)

We have
L(t") = F(rL: D Put n=-5/2. Hence
S
_ I'(-3/2) 4Jr
L(t 5/2) — (3‘3/2 ) = 30 Change s to s+4.

4N

L(e *t5/2) =
Therefore, ( ) 3(8 + 4)—3/2

Transform of t" f(t)

Here we suppose that n is a positive integer. By definition, we have

F(s) = je‘“ f (t)dt
0

Differentiating ‘n’ times on both sides w.r.t. s, we get

dn an 0
F(s)= e f (t)dt
ds" ®) 85”5[ ®

Performing differentiation under the integral sign, we get

dn ¥ n ,—st
o F(s)= 0j(—t) e~ f (t)dt

Multiplying on both sides by (-1)" , we get

d" .y
o F(®)= J" T (e "dt=L[t" F (O], by definition
0

D"

Thus,

dn

L [t"f(H]= (=1)" &

F(s)

This is the transform of t" f (t).
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Also,

L‘{ d’ F(s)} =(-)"t"f (1)
ds"

In particular, we have

L[t f(t)] —% F(s), forn=1

2

L[t f(t)]Z(;j? F(s), forn=2, etc.

Also, L L;j— F(S)} =-tf(t) and
S

L {d—z F(s)} =t>f (t)
ds

Transform of

f(t)
Tt

We have, F(s) = Ie_St f(t)dt
0

Therefore,

0

(XI) F(s)ds= | rfe‘St f (t)dt}ds
S S| 0

0

Tt (t)[e: Tdt

- I f (t)ﬁe‘“ds}dt

122



010
A t
Thus, L(@j = O]F (s)ds

This is the transform of @

O f(t
Also, L IF(S)dS L)
: t
Examples :
1. Find L [te" sin4t]
4. 4
We have, L[e sm4t] =
(s+1)"+16
So that,
L [te't Sln4t] = 4{—1{2;}}
ds (s” +2s+17
8(s+1)

(57 +25+17)

2. Find L (£’ sin3t)

We have L (sin3t) = 23
S°+9
So that,
d’( 3 )
L (t* sin3t) = —
( ) ds? (sz +9
_ ¢4 s
ds (s> +9)°
_18(s* -3)
(s> +9)°
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—t .
3. Find L(e Smt)
t
We have

1
(s+1)* +1

Hence L(e smtJ :[(SJrl) = [an‘l(s+l)j

L(e™" sint) =

—tan"'(s+1) =cot 1 (st1)

NN

4. Find L(Slt—ntj . Using this, evaluate L(Sm at)

We have L (sint) =

s”+1
sint ¥ dS -1
Sothat LI[f(t)]=L — | = = fn S

[t (V)] (t) Je la j
= %—tan*1 s=cot's=F(s)
Consider
sinat sinat
L jzaL )zaLf(at)
t at

= a[l F(Eﬂ , in view of the change of scale property
a
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5 Find L [cosat - cosbt}

s s
s’+a’ s’+b?

cosat — cosbt J' S S d
So that L|l—|= - S
{ t } Lz +a’> s’ +b’

S

We have L [cosat — cosbt] =

I
0 | —
(e
_I_

-

o
age
VR
w | wmw
[ [\
+ |+
oo
[ [
Ne—
I

6. Prove that J‘e‘“t sintdt = i
; 50

We have

etsintdt = L(tsint) — -9 | (sint :_i{ I }
(;'- ( ) ds (sint) ds|s® +1

f— i
(s> +1)°

Putting s = 3 in this result, we get
fe ™ tsintdt = 3
; 50

This is the result as required.

125



Consider

Lf'(t)= IG_St f'(t)dt
0

- b ¢ - f-9)e™ (Ot by using integration by pars
0

- Ltw(estf(t)— f(O)}SLf ®

=0-£(0) +s L[f(t)]
Thus
L f'(t) =s L[f(t)] - f(0)
Similarly,

L f"(t) =s” L[f(t)] —s f(0) - f'(0)

In general, we have

Lf "(t) = s"Lf (1) —s" £ (0) = "2 £ (0) —...... — £ " (0)

Transform of If(t)dt
0
t
Let () = j f(Odt. Then §0)=0 and ¢'(t) = f(1)
0

Now, Lo@m= [e gyt
0

} - frw® S dt

e*St
—-S

= {(fﬁ(t)
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- (0-0) +ldjf (t)e™'dt
S 0

Thus, L [f(t)dt =§ L[ f ()]

41 !
Also, L [g L[ f (t)]} = j f (t)dt

Examples:
1. By using the Laplace transform of sinat, find the Laplace transforms of cosat.

a

Let f(t) = sin at, then Lf(t) = 5
+a

S2

We note that
f'(t) =acosat
Taking Laplace transforms, we get

Lf'(t) = L(acosat) = aL(cosat)

or L(cosat) = é Lf'(t) = é iLf t-f (0):

1[ sa
== —0
aLz+a2 }

Thus

L(cosat) =

2 2

S"+a

This is the desired result.

t 1 1 1
2. Given L 2\/: = , show that L| — |=—
|: 7Z':| S3/2 |:\/g:| Jg

t
Let f(t) = 21/— , given L[f(t)] = 31/2
T S
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2 11
Jr ot Jat

Taking Laplace transforms, we get

1
f’ = _—
Lf(t) L[\/_}

Hence

We note that, f'(t) =

L{ﬁ} = Lf'(t) = sLf (t) - f(0)

Ths L{ﬂ -+

This is the result as required.

(cosatt—cosbt)dt

3. Find L]
0

2 2
Here LLf(0)] = L(Cosat_COSbtJ:llog[s +b )

t 2 s’ +a?

t
1
Using the result L jf (t)dt = S Lf (t)
0

t
cosat —cosht 2 K2
We getj L'[( )dt = Llog(s +b j
: t 2s

s’ +a?

t
4. Find the‘t sin 4tdt
0
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. 8(s+1)
L & ' sin4t
Here [3 } (s> +25+17)°

8(s+1)
s(s* +2s+17)°

t
Thus L jte-t sin4tdt —
0

Laplace Transform of a periodic function
Formula: Let f (t) be a periodic function of period T. Then

1 T
— fe fmat

0

Lf (t) =
Proof :By definition, we have

Li- [e*fdi= e f(uydu
0 0

T (n+D)T

0

w (N+D)T

= J'e‘su f (u)du

n=0 nT

Letussetu=t+nT, then

w T
L f(t) = Z Ie_S(HnT) f (t + nT)dt

n=0t=0
Here
f(t+nT) = f(t), by periodic property
Hence

T

Lf (t) = i(esT )" [ f (tdt

0
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I
[ [—e }J‘e o f (t)dt, identifying the above series as a geometric series.
- 0

1
1 _ efsT

Thus L[ f(t)] = { } fe=tf @yt

This is the desired result.

Examples:-
1. For the periodic function f(t) of period 4, defined by f(t) {3‘[, 0<t<2

6, 2<t<4
find L [f(t)]

Here, period of f(t) =T =4

We have,
aT
—st
L f(t) = L_e;ﬂ _Ofe f (t)dt
_ [ ! T'e-stf(t)dt
Cl1-e™ ;
1 2 4
—st —st
=1 o D3te dt+ I6e dt}
0 2
2 4
1 e—st 2 —st —st
|3 H—H — 1.2t +6[e—
1-e -s )], o —S -s ),
1 |34-e™ -2se*
- 1_e—4S SZ
Thus,
L[f()] = 3(1-e —2se™™)

s*(1-e™)
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3. A periodic function of period 2z is defined by
@

f(t)= [ Esinot, 0<t<Z
(0]

27

Vs
0, — <t —
® @

Ew

where E and © are positive constants. Show that L f(t) = (82 W2 )1 - o /W)

Sol: Here T = 2—” Therefore
w

2zl w

1 s
L0 = T =a@wa je Cf (t)dt
0

1 /o
_ g I Ee ™ sin otdt
I-e .
zlo
E e .
- Tl e {ssinot — o cosat
l-e S"+w o

E (e +1)
B l_e—s(27r/a)) S2 +a)2

Eo(l+e"'?)
= (l_e—Sﬁ/a))(l_l_e—Sir/a))(SZ +a)2)

Ew
- (1_e—5ﬂ'/a))(82 +0)2)

This is the desired result.

3. A periodic function f(t) of period 2a, a>0 is defined by

f(t)={ E, 0<t<a
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-E,a<t<2a
E as
show that L [f(t)] = —tanh(;)
S

1%
Sol: Here T =2a. Therefore L [f(t)] = o™ J.e f(t)dt
0

1 a 2a
- —MDEe“dH [- Ee“dt}
1-e™*|; ;

l_ e—sa } (e—2as _ e—as)]

- S(l_e—2a8)
B e
S(l_e—ZaS) A
E(l-e®)’

Ts(l—e®)(1e )

as/2 —as/2
E|le™" —e
= o | ~as/2 —as/2

S| e +e
:Etanh(ﬁ)
S 2

This is the result as desired.

Step Function:

In many Engineering applications, we deal with an important discontinuous function H
(t-a) defined as follows:

{0, t<a
H (t-a) = I, t>a

where a is a non-negative constant.
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This function is known as the unit step function or the Heaviside function. The function is
named after the British electrical engineer Oliver Heaviside.The function is also denoted by
u (t-a). The graph of the function is shown below:

1€ (20} W———

Note that the value of the function suddenly jumps from value zero to the value 1 as t > a
from the left and retains the value 1 for all t>a. Hence the function H (t-a) is called the unit step

function.
In particular, when a=0, the function H(t-a) become H(t), where
0, t<0

H(t) = 1, t>0

Transform of step function

By definition, we have L [H(t-a)] = J.e_St H(t—a)dt
0

- aje—st 0dt + wje‘st (hdt
0 a

—as

D

In particular, we have L H(t) = 1
S

—as

e
Also, L I{T} =H(t-a) ,nd L*GJ —H(®)

Unit step function (Heaviside function)

Statement: - L [f (t-a) H (t-a)] = ™ Lf(t)

Proof: - We have
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L [f(t-a) H(t-a)] = wjf (t—a)H(t—a)edt

= _[e‘“ f (t —a)dt

a

Setting t-a =u, we get

L[f(t-a) H(t-a)] = f e "™ f (u)du
0

= e L [f(1)]

This is the desired shift theorem.

Also, L'[e™ L f(t)] = f(t-a) H(t-a)

Examples:

1.

Find L [e"? + sin(t-2)] H(t-2)
Sol: Let  f(t-2) = [e"* + sin (t-2)]
Then f (t) = [e' + sint]

1
+1

2

so that LA1(t)= L+
s—-1 s

By Heaviside shift theorem, we have

L[f(t-2) H(t-2)] = ¢ Lf(t)

Thus,

L[e™2 +sin(t —2)]H(t -2) = e‘z{

2. Find L (3t” +2t +3) H(t-1)

Sol: Let f(t-1) =3t +2t+3

1

|
—+
s—1

34
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2

1
+1
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so that
f(t) = 3(t+1)> +2(t+1) +3 = 3t* +8t +8

Hence
6 8 8
L[f(t)]=—3+—2+—
S S S

Thus

L [3t* +2t +3] H(t-1) = L[f(t-1) H(t-1)]

= ¢ L[f(t)]
_ S|:£+£+§:|
- 3 s? s

3. Find Le™ H (t-2)
Sol: Let f (t-2) =¢, sothat, f(t)=¢e?
-2

+1

Thus, L [f(t)] = Se

By shift theorem, we have

e—2(s+1)
L[f(t—2)H({t-2)]=e>*Lf(t) =
S+1
Thus
e—2(s+1)
LE&'Ht-2
[ ( )} S+1

fl(t), t< a
4. Letf(t)= {fz(t), t>a

Verify that f(t) = f1(t) + [fx(t) — £ () ]H(t-a)

Sol: Consider
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fi(t) + [f2() - fi®)]H(t-a) = ((Hi() + K (O -fit), t>a

0, t<a

= f2 (t)a t>a
fi(t), t<a =f1{(t), given
Thus the required result is verified.

5. Express the following functions in terms of unit step function and hence find their
Laplace transforms.

1. ()= , 1<t<2

4t, t>2

Sol: Here, f(t) = t* + (4t-t*) H(t-2)
Hence, L f(t) = s% + L4t -t*)H(t-2) (i)

Let ¢ (t-2)=4t—t*

so that ¢(t) = 4(t+2) — (t+2)* = -* + 4
Now, L[g(t)]=— % + 4

S S
Expression (1) reads as

L )= S%+L|s<t—2>H(t—2>I

2
e SL(t)

2 (4 2)
e
s’ (s s’

This is the desired result
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2. cost, 0<t<m
f(t)= { sint, t>7

Sol: Here f(t) = cost + (sint-cost)H(t-7)

Hence, L[ f(t)] = SZSH 4+ L(sint—cost)H(t—z) (i)

Let ¢ (t-m) = sint — cost
Then ¢(t) = sin(t + m) — cos(t + 7)) = -sint + cost

1 S
so that L[ ¢(t)] = — +
Lo(®)] s?+1 s*+1

S

ot Lbt-nHt-7)_

Expression (ii) reads as L [f(t)] =

S

~s2+1

+e "Lg(t)

UNIT IMPULSE FUNCTION
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2 — _ 1 2
Solution: g [(r—3)+ 3]
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The Inverse Laplace Transforms

Introduction:

Let L [f (t)]= F(s). Then f(t) is defined as the inverse Laplace transform of F(s) and is
denoted by L™ F(s). Thus L [F(s)] = f (1).
Linearity Property

Let L [F(s)] = f(t) and L [G(s) = g(t)] and a and b be any two constants. Then
L' [aF(s)+bG(s)] =aL’' [F(s)] + b L' [G(s)]

Table of Inverse Laplace Transforms

F(s) f(t)=L"F(s)
1 1
—,58>0
S
at
— ,s>a €
s—a
S Cos at
,$>0
s +a’
1 Sin at
—.,5>0
s’ +a’ a
1 s>|a| Sin h at
s?—a%’ a
S
s>l
Cosh at
Snl+1’S>0 ﬂ
n!
n=0,1,2,3,
n
%,s>0 t _
ré+1_
n>-1
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Example
1. Find the inverse Laplace transforms of the following:
) 1 s+b 2s-5 4s-9

i ii +
2s-5 ()32+a2 ( )452+25 9-s’

(ii) L“[%}:L{ _ 2}b L"{ ! 2}:cosat+gsinat
S"+a S"+a S"+a a

5 9

— — S— S—
(l“) LI|: 223 5 +4S §i|:2|_1 A _4L71 25
4s°+25 9-s 4 Sz+25 s° -9

=l cosﬂ—sinﬂ -4 cosh3t—§sin h3t
2 2 2 2

Evaluation of L F(s —a)

We have, if L [f(t)] = F(s), then L[e" f(t)] = F(s — a), and so
L' [F(s—a)]=e" f(t) =e™L" [F(s)]

Examples

1.Evaluate : L™ 3 +l‘
€+1

~
Given = 1| S 1y L
€+1° €+1 €1
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-t -1 1 -t -1 1
:3e L |:S—3 —2e L 5—4

Using the formula

L‘{ 1 }:t_' and takingn=2 and 3, we get
n!

e7t? e’

2.Evaluate : L [i}

s?-2s+5

Given = L’ —522 = L —‘_1;+3
€61 +4 61 _+4
S]]
€-1_+4 ¢-1_+4

—e' L'l[ > }r3et L'{ ! }
S”+4 S°+4

=e' cos2t +% el sin 2t

3.Evaluate ;L' {228—+}
S°+3 +

~

‘+%/_1 -1 ‘+%/ -1 1

Given =2L"'| —2=2— [=2| L' —<2=—|-L

2 2 4 32 z/
RS N T A R TS

= s = 1
=2le2 " —e2 !
_5 _5
-9, -9,
=3t
=2e?2 shﬁtisinhﬁt
2 5 2
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2
4.Evaluate: L {w}

s’ +s%—2s

we have

25> +5s—4 25’ +5s—4
3 2 - 2 N
s*+s?-2s s€ +s-2

257 +55-4
s€+2 €—1_

Then 2s™+5s-4 = A(s+2) (s-1) + Bs (s-1) + Cs (s+2)

Fors=0,we get A=2, fors=1, we get C=1 and for s =-2, we get B=-1. Using these values
in (1), we get

252 +55—-4 2 1 1
- - _+_7

$+52-25 s s+2 s-—1

Hence

2
L |:22$+—258245:| =2—e " +¢!
s?4+s2—

5.Evaluate : L' is 3 -
€+1°+6€+2

Let us take

4s+5 A B C
- +

€+1°+€+2 €+1° s+1 s+2

Then 4s+5=A(s+2)+B(s+1)(s+2)+C(s+1)2

Fors=-1,weget A=1, fors=-2, we get C=-3
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Comparing the coefficients of s, we get B + C = 0, so that B = 3. Using these values in

4s+5 1 3 3

~ + ~
€+1°+6€+2  €+1° €+1_ s+2

Hence L[ —— :e_tL_IPz}+3e—tL“H‘3e—th‘{l}
€+1>+6€+2 s s s

2t

(1), we get

—te ' +3et —3e”

3
6. Evaluate :L' { S Z }
S —a

3
s A N B +Cs+D )

Llet s*-a* s-a s+a s?+a’

Hence s° = A(s + a) (s° + a%) + B (s-a)(s*+a’)+(Cs + D) (s* — a?)
For s = a, we get A = V4; for s = -a, we get B = %4; comparing the constant terms, we get
D = a(A-B) = 0; comparing the coefficients of s°, we get

1 =A+ B+ Candso C=". Using these values in (1), we get

11 1] 1 s
s*—a* 4|s—-a s+a| 2s%+a?

3
g4 S 1 a1
L {ﬁ}:z "’“ +e ™ +5cosat
S a -
1 -
=5 Joshat+cosat

7. Evaluate :L [;2}
S +5"+1

S S 1{ 25 J
4 2 Y &) N 4> o 5 >
Consider S 87+ € st 3 €541 2] €541 €541
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N | =

(€ +5+1> € —s+1%

| Cs+1 8 -s+1

N | =

o 1
2| € —s+1j ¢ +s+1j

N | —
IA
\
+
AW
”~
+
o
_|_
| W

Therefore

1 1
Ll[ : } -~ e L LI e 2 1
2

4 2
ST+s”+1 Sz+§ Sz+§
4 4
V3 3
1 lsin——t 1 sin——t
_ ez 2 o2 2
217 3 N
2 2

Evaluation of L'[e™ F (s)]

We have, if L [ (t)] = F(s), then L[f(t-a) H(t-a) = €™ F(s), and so

L'[e™ F(s)] = f(t-a) H(t-a)
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Examples

(1)Evaluate: L™ {e—}

¢-2°
Here
a=5 F(s)= !
B ‘_Zj
_ L1 o1 e't?
Therefore f(t)=L"'F(s)=L" —eX S =
® © ¢-2° st 6
Thus
6755
L ~ =f(t—-a)H(t-a)
2(-5_g <73 -
TS s
6
o e s
(2) Evaluate: L''| ——+=
s°+1 s +4
Given=f (-7 H€-7 + f,{-27 H{-27 )
Here f(t)=L"—— =sint
s +1

ft)=L" 25 4=cos2t
ST+

Now relation(1) reads as
Given = sin€{-7 H€-7 +cos2€-27 Hq-27 _

—=—cost H{—7 +cos @ H{-27 _
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Inverse transform of logarithmic functions

We have, if L f(t)=F(s), then L |f € = _di FC
S

G d Y
L ( dSFG/)—tf(t)

Hence

Examples:

(1) Evaluate: L™ log(ﬂj
s+b

Let F(s) = 1og(ﬁ] ~log€+a ~log€+b_
s+b

Then —iFG} {L—L}
ds s+a S+b

Sothat L [—% F Gj e ]

or tfq€=e®-e®

efbt _ e—at

Thus fq =
</ b

(2) Evaluate L™ tan‘l(ij
S

Let F(s) = tan™ (%)

d ~ a
Then ——F € =
ds ¢ Lz+a2}
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or L{—% F Qj =sinat sothat

or tfq =sinat

~ sin at
- a

f ¢

F s
Inverse transform of {—}
S

S{ +a

-l 1
(1) Evaluate: L [ > zﬂ

so that

Let us denote F € = ———
s’ +a

~ sin at

-

ft)=L"'F ¢

1 L F¢” tsin at
\—_L] ‘/: I
a

Then L =
s@ +a> P S

dt

0

_ €—cos at:

aZ

Convolution Theorem:
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Using Convolution

theorem find the

inverse laplace

transforms
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_ 1
(2) Evaluate: L™ [—2}

s? s+a

Solution : we have L

_ -at
_=e ™t
s+a

1 t
Hence L' —— = Ie‘a‘t dt
ss+a

1 . .
=— [1 —e ™ 1+at ], on integration by parts.
a

Using this, we get

: 1 a
LlS -~ =—20j[ ‘l+at |dt

=§[at l+e™ +2 e‘at—l]

Inverse transform of F(s) by using convolution theorem :

We have, if L(t) = F(s) and Lg(t) = G(s), then

L ) = g(t) FLE(t)-Lg(t)=F(s)G(s) and so

L' E© 6 FfO*g® = [f Cud@

This expressionis called the convolution theorem for inverse Laplace transform
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Examples

Employ convolution theorem to evaluate the following:

. 1
OL {(+a}+bj

Sol:Let us denote F(s) = i ,G(s) = !
s+a s+b

Taking the inverse, we get  f(t)=e™, g(t)=e™
Therefore, by convolution theorem,

t

L‘{ b} je ey =e‘a‘jea‘b”du
s+a S+

0
e ea— t_l
a-b

e —e
a-b
_ S
2) !
S
1 s

Sol: Let us denote F(s) = ———,G(s) =
S +a

sin at

f(t) =

,g(t)=cos at

Hence by convolution theorem,

t
1 .
L'— = I—sma t—u cosau du
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1 tIsin at+sin at—_2au

=— 5 du, by using compound angle formula
a 0
t
1 . cos at—2au t sin at
=—/|Uusmat— =
2a —2a \ 2
S
L
©) ¢-1¢+1
So]: Here
1 S
FS)=——, G(s) =
©) s—1 ®) s?+1
Therefore

ft) = e', g(t) = sint

By convolution theorem, we have

1 e
L' ————s | sinudu =e'|—¢€sinu—cosu
¢-1€+1 J 2

t

0

:% [‘t(—sint—cost:— ‘_1:]:% [t —sint—cost]

LAPLACE TRANSFORM METHOD FOR DIFFERENTIAL EQUATIONS

As noted earlier, Laplace transform technique is employed to solve initial-value

problems. The solution of such a problem is obtained by using the Laplace Transform of the

derivatives of function and then the inverse Laplace Transform.

The following are the expressions for the derivatives derived earlier.

153



LIf(t)] =sLf(t)-f(0)
LIf(t) =s> Lf(t)-s f(0)-(0)

LIf"(t)=s> Lf(t)-s £(0)-s £{0)-£'(0)

l _ -t _
1. Solve by using Laplace transform method Y +y=te". y(0)=2

Sol: Taking the Laplace transform of the given equation, we get

~ -~ ~ 1
Ly -y6 +LyC =——
ILyC-yo ) Cor
-~ -~ 1
Cr1Lyq-2=
=8 ¢+1°
so that
Ly(:=252+4s+3

¢+1°
Taking the inverse Laplace transform, we get

2s* +4s+3

Y(=L"
- ¢+lj

_ 2€+1-1+4€+1-1+3
¢+1°

L 2 N 1
s+1 ¢+1j

= %e‘ ¢ +4:

This is the solution of the given equation.

2. Solve by using Laplace transform method:

y"+2y'-3y=sint, y(0)=Yy'(0)=0
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Sol: Taking the Laplace transform of the given equation, we get
2 ’ 1
[uo-syo-yof2lyo-y0 331y -
Using the given conditions, we get

1
s?+1

Ly > +25-3 &

or

1
Lyt)=——
YO ¢-1¢+3 € +1
or

4 1
yo=L {c—l}+3}2+&

J A B Cs+D}
=L + +
[s—1 s+3 s?+1

s 1

111+105

=L l -
8 s—1 40 s+3 s?+1

by using the method of partial sums,

N L Cost+2sint _

8 40

This is the required solutionof the given equation.

3) Employ Laplace Transform method to solve the integral equation.

f(t)=1+]fq3in(—u§u
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Sol: Taking Laplace transform of the given equation, we get

t
L ()= + L[f u sin t-u du
S 0
By using convolution theorem, here, we get
1 L f()

LKO=}~+U(U-Lﬁnt=—+ 5
S S s°+1

Thus

2

2 2
Lf(t):s‘sj1 or f(t):L‘l(SSle:H%

This is the solution of the given integral equation.
L . . . dx_dx
(4) A particle is moving along a path satisfying, the equation el + 65 +25x =0 where

x denotes the displacement of the particle at time t. If the initial position of the particle is at x =20
and the initial speed is 10, find the displacement of the particle at any time t using Laplace transforms.
Sol: Given equation may be rewritten as

X"(t) + 6x'(t) + 25x(t) = 0

Here the initial conditions are x(0) = 20, x'(0) = 10.

Taking the Laplace transform of the equation, we get

L, () s* +65+25]-20s-130=0 or

20s+130

L(t)=—
) $?+6 +25

so that

X“)=|:l 203+230
S+3 +16
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o 20€+3 +70
¢+3°+16

Y1) T B P ][R
6é+3°+16 €+3°+16
~' sin 4t

e
=20e " cosdt+35

This is the desiredsolutionof the given problem.

(5) A voltage Ee™ isapplied at t = 0 to a circuitof inductance L and resistanceR. Show that the

E _R
current at any time t is e —-e L
R-a

Sol: The circuit is an LR circuit. The differential equation with respect to the circuit is
d .
L—+Ri=E(
at ®

Here L denotes the inductance, i denotes current at any time t and E(t) denotes the E.M.F.

It is given that E(t) = E ¢™. With this, we have

Thus, we have
Lﬂ+ Ri=Ee ® or
d
Li't)+ R i(t) = Ee ™
at )

L I"T i'(t)} R I"T i'(t):: EL; (_ J or

Taking Laplace transform(L; ) on both sides, we get
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- - 1
LEL, i)y-i0) +R ], |(t)__EE

Sincei(o)=o,we get L i(t) |L+ R = E or
- S+a

E
¢+a + 6L+R _

L, i(t) =

. . - E
Taking inverse transform L, we get i(t) = L'

T (s+a)(sL+R)
__E {LTI L L L' ! }
R-alL s+a sL+R

Thus

Rt
] E -—
i(t) = e d_eg L
® R—aL[ ]

This is the resultas desired.

(6) Solve the simultaneous equations for x and y in terms of t given % +4y =0,

%—9x=0withx(o)=2,Y(0)=1-

Sol: Taking Laplace transforms of the given equations, we get
| Lx(t)-x(0) +4Ly(t)=0
—9Lx®+ fLy®-y() =0

Using the given initial conditions, we get

sLxt)+4Lyt)=2
-9Lx(t)+5Ly)=1

Solving these equations for Ly(t), we get

S+18
s? +36

Ly®) =
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so that

y(t)=L‘1[ s, 18 }

$2+36 s*+36

=cos 6t + 3 sin 6t (1)

Using this in % —-9x =0, we get

x(t) :é | 6sin6t+18cos6t
or
2 . -
x(t)== fcos6t —sin 6t
3 (2)

(1) and (2) together represents the solution of the given equation.
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