
MODULE - 1 
DIFFERENTIAL EQUATIONS –I 

INTRODUCTION: 

LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND 
HIGHER ORDER WITH CONSTANT COEFFICIENTS 
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SOLUTION OF A HOMOGENEOUS SECOND ORDER LINEAR 
DIFFERENTIAL EQUATION 
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INVERSE DIFFERENTIAL OPERATOR AND PARTICULAR INTEGRAL 
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SPECIAL FORMS OF THE PARTICULAR INTEGRAL 
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METHOD OF UNDETERMINED COOFFICIENTS: 

The particular integral of an nth order linear non-homogeneous differential equation F(D)y=X
with constant coefficients can be determined by the method of undetermined coefficients 
provided the RHS function X is an exponential function, polynomial in cosine, sine or sums or 
product of such functions. 

The trial solution to be assumed in each case depend on the form of X. Choose PI from the 
following table depending on the nature of X. 

Sl.No. RHS function X Choice of PI yp 
1 K axe C axe

2 K sin (ax+b) or K cos (ax+b) 1c  sin (ax+b)+ 2c  cos (ax+b) 
3 K axe  sin (ax+b) 

or 
K axe  cos (ax+b) 

1c  axe sin (ax+b)+ 2c  axe cos (ax+b) 

4 K nx where n=0,1,2,3….. 2
0 1 2 1.... c n

nc c x c x x c x

5 K nx axe where n=0,1,2,3….. 2
0 1 2 ....ax n

ne c c x c x c x

6 K nx sin (ax+b) 
          or 
K nx cos (ax+b) 

0

1
2

2

sin(ax b) b cos(ax b)
a . .sin(ax b) b x cos(ax b)

a . .sin(ax b) b x cos(ax b)
...........
a . .sin(ax b) b x cos(ax b)n n

n n

a

x

x

x

7 K nx dxe sin (ax+b) 
          or 
K nx dxe cos (ax+b) 

0 0

1
2

2

sin(ax b) b cos(ax b)
a . .sin(ax b) b x cos(ax b)

a . .sin(ax b) b x cos(ax b)
...........
a . .sin(ax b) b x cos(ax b)

dx

n n

n n

e a

x

x

x

1. Solve by the method of undetermined coefficients 2(D 3D 2) y 4e x

xx

c ececy

mmmmmSol

2
21

2 2,10)2)(1(023:

Assume PI x

p ecy 3
1 substituting this in the given d.e we determine the unknown coefficient as 

19



x

p

xx

xxxx

x

ey

cece

ececece

eyDD

3

33

3333

32

2
242

4299
4)23(

2. Solve xexy
dx

dy

dx

yd 3242 2
2

2

by the method of undetermined coefficients. 

Sol: We have xexyDD 32)42( 2

A.E is i
i

mmm 31
2

322
2

1220422

xcxcey x

c 3sin3cos 21

Assume PI in the form xeaaxaxay 432
2

1

x

x

eaayD

eaaxaDy

41
2

421

2

2

Substituting these values in the given d.e 

We get xxxx exeaaxaxaeaaxaeaa 32)(4)2(22 2
432

2
142141

Equating corresponding coefficient on both sides, we get 

133
342:

004
2
12

2
12

0422:
2
124042

04
2
14044:

2
124:

44

444

33

321

222

221

11
2

aa

aaae

aa

aaac

aaa

aaax

aax

x

x

p exxyPI
2
1

2
1: 2

xx exxxcxcey
2
1

2
13sin3cos 2

21

20



3. Solve by using the method of undetermined coefficients xexy
dx

yd x 3sin9 23
2

2

Sol: We have xexyD x 3sin)9( 232

A.E is 3909 22 mmm  

xx

c ececy 3
2

3
1

Choose PI as  xGxFEeDCxBxAxy x 3cos3sin223  

xGxFEeBAxy

xGxFEeCBxAxy

x

x

3cos93sin9426
3sin33cos3223

2

22

Substituting these values in the given d.e, we get 

xex

xGxFEeDCxBxAxxGxFEeBAx

x

xx

3sin
3cos3sin93cos93sin9426

23

2232

Equating the coefficient of 

xe
x

xy

GGGx

FGFx

EEEEe

DDBC

CCC

CCAx

BBx

AAx

x

p

x

3sin
18
1

5
1

27
2

9
1

0099:3cos
18
1099:3sin

5
115194:

0092:
27
2

3
2909

3
2

09
9
16096:

009:
9
119:

23

2

2

3

Complete solution  pc yyy

xx ececy 3
2

3
1 xe

x
x x 3sin

18
1

5
1

27
2

9
1 23
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METHOD OF VARIATION OF PARAMETERS: 
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MODULE - 2 
DIFFERENTIAL EQUATIONS –II 

SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS: 
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SOLUTION OF CAUCHY’S HOMOGENEOUS LINEAR EQUATION AND 
LEGENDRE’S LINEAR EQUATION
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PROBLEMS: 
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Differential equations of first order and higher degree 
If y=f(x), we use the notation p

dx

dy throughout this unit. 

A differential equation of first order and nth degree is the form
1

0 1 2 ....... 0n n n

nA p A p A p A  

Where 0 1 2, , ,... nA A A A are functions of x and y. This being a differential equation of first order, 
the associated general solution will contain only one arbitrary constant. We proceed to discuss 
equations solvable for P or y or x, wherein the problem is reduced to that of solving one or more 
differential equations of first order and first degree. We finally discuss the solution of clairaut’s 
equation. 

Equations solvable for p 

Supposing that the LHS of (1) is expressed as a product of n linear factors, then the 
equivalent form of (1) is  

1

1

( , ) ( , ) ... ( , ) 0 ....(2)

( , ) 0, ( , ) 0... ( , ) 0
n

n

p f x y p f x y p f x y

p f x y p f x y p f x y

All these are differential equations of first order and first degree. They can be solved by 
the known methods. If 1 ( , , ) 0, ( , , ) 0,... ( , , ) 0nF x y c F x y c F x y c respectively represents the 
solution of these equations then the general solution is given by the product of all these solution. 
Note: We need to present the general solution with the same arbitrary constant in each factor. 

1. Solve :
2

0dy dy
y x y x

dx dx
 

Sol:  The given equation is 
2

2

( ) 0

( ) ( ) 4
2

( ) ( )
2

.,
2

., 1 /
,

yp x y p x

x y x y xy
p

y

y x x y
p

y

y x x y y x x y
ie p or p

y

ie p or p x y

We have
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2
2 2 2 2

2

1 ( ) 0

,

., 2 ( ) 0
2

Thus the general solution is given by (y-x-c) (x ) 0

dy
y x c or y x c

dx

dy x
Also or ydy xdx y dy x dx k

dx y

y
ie k or y x k or x y c

y c

2. Solve : ' 2( ) (2 3 ) 6 0x y x y y y

        Sol:  The given equation with the usual notation is, 
2

2

3

(2 3 ) 6 0

(2 3 ) (2 3 ) 24
2

(2 3 ) (2 3 ) 32
2

2 2 2 ( 2 ) 0

3 3

., log 3log log log log , log

., log

xp x y p y

x y x y xy
p

x

x y x y y
p or

x x

We have

dy
dy dx c or y x c or y x c

dx

dy y dy dx dy dx
Also or k

dx x y x y x

ie y x k or y x c where k x

ie y 3 3 3

3

log ( ) 0
Thus the general solution is (y-2x-c) (y-cx ) 0

cx y cx or y cx

3) Solve ( ) ( )p p y x x y

  Sol:   The given equation is, 0)(2 yxxpyp

2

2 2

4 ( )
2

4 (2 )
2 2

2( )., ( )
2

,

y y x x y
p

y x xy y y x y
p

y x
ie p x or p y x

We have
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2

2

2

,

., , . ( )

1, ;

., ( ) , int .

(2 ) (

P dx x

x

x x x

x

dy x
x y k

dx

dy
Also y x

dx

dy
ie y x is a linear d e similar to the previous problem

dx

P Q x e e

Hence ye xe dx c

ie ye xe e c egrating by parts

Thus the general solutionis givenby y x c e 1) 0y x c

Equations solvable for y: 

We say that the given differential equation is solvable for y, if it is possible to express y 
in terms of x and p explicitly. The method of solving is illustrated stepwise. 
 Y=f(x, p) 
We differentiate (1) w.r.t x to obtain 

,dy dp
p F x y

dx dx

Here it should be noted that there is no need to have the given equation solvable for y in 
the explicit form(1).By recognizing that the equation is solvable for y, We can proceed to 
differentiate the same w.r.t. x. We notice that (2) is a differential equation of first order in p 
and x. We solve the same to obtain the solution in the form. ( , , ) 0x p c  

By eliminating p from (1) and (3) we obtain the general solution of the given 
differential equation in the form G(x,y,c) =0 

Remark: Suppose we are unable to eliminate p from (1)and (3), we need to solve for x and y 
from the same to obtain. 

1( , ), ( , )x F p c y F p c

Which constitutes the solution of the given equation regarding p as a parameter. 

Equations solvable for x 

We say that the given equation is solvable for x, if it is possible to express x in terms of y 

and p. The method of solving is identical with that of the earlier one and the same is as follows. 

  x =  f(y, p ) 
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Differentiate w.r.t.y to obtain 

1 ,dx dp
F x y

dy p dy

(2) Being a differential equation of first order in p and y the solution is of the form. 

( , , ) 0y p c  

 By eliminating p from (1) and (3) we obtain the general solution of the given d.e in the form 

G(x, y, c) = 0 

Note: The content of the remark given in the previous article continue to hold good here also. 

1. Solve: 22 tan ( )y px xp

2: , 2 tan ( )Sol By data y px xp

The equation is of the form y = f (x, p), solvable for y. 

Differentiating (1) w.r.t.x, 

2
4

2
4

12 2 .2
1

1., 2 2
1

dp dp
p p x x p p

dx x p dx

dp dp
ie p x xp p

dx x p dx

2
., 2 12 4 2 41 1

2 4 2 41 . 1., 22 4 2 41
., log 2log

1̀ 2consider 2 tan ( )
2

Using (2) in (1) we have,
1y = 2 / . tan ( )
12 tan ,

p dp p
ie p x

dxx p x p

x p p dp p x p
ie p x

dxx p x p

ie x p k

y px xp

and xp c

c x x c

Thus y cx c is the general solution.
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2. Obtain the general solution and the singular solution of the equation 2y px p x

Sol:  The given equation is solvable for y only. 

   
2y px p x  

Differentiating w.r.t x, 
1., 2

2 2

., log log log ( ) log
2,

2 /
2 2 4 4Using (2) in (1) we have, ( / ) ( / )

dp dx dp dx dp
ie p x or

dx x p x p

ie x p k or x p c x p c

Consider y px p x

x p c or x p c or p c x

y c x x c x x

Thus 2xy c c x  is the general solution. 

Now, to obtain the singular solution, we differentiate this relation partially w.r.t c, 

treating c as a parameter. 

That is, 1=2cx     or    c=1/2x. 

The general solution now becomes, 

2

1
2

xy x
x

Thus 24 1 0,x y is the singular solution. 

3) Solve y=p sin p + cos p

   Sol:  y = p sin p + cos p 

      Differentiating w.r.t. x, 

  

cos sin sin

., 1 cos cos

cos

dp dp dp
p p p p p

dx dx dx

dp
ie p or p dp dx

dx

p dp dx c
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.,sin sin
Thus we can say that   sin    cos   and sin  -  constitutes
the general solution of the given d.e

1:sin sin ( ).
We can as well substitute for  in (1) and prese

ie p x c or x p c

y p p p x p c

Note p x c p x c

p nt the solution in the form,
1 1( )sin ( ) cossin ( )y x c x c x c

4) Obtain the general solution and singular solution of the  equation
22y px p y .

Sol: The given equation is solvable for x and it can be written as 

2 ........(1)y
x py

p

 

     Differentiating w.r.t  y we get 

2

2

1 1

y dp dp
p y

p p p dy dy

y dp
p

p p dy

2

1 ,

1 0 0

........(2)
2  (1)

2

dp
Ignoring p which does not contain this gives

p dy

y dp dy dp
or

p dy y p

Integrating we get

yp c

substituting for p from in

y cx c

5) Solve 2 2 cot  p py x y . 

Sol: Dividing throughout by p2, the equation can be written as
2

2
2

2
2

2

2 cot 1 cot .

2 cot cot 1 cot

y
x adding x tob s

p

y
x x x

p

 

2
2 cot cosy

or x ec x
p

40



cot cosy
x ecx

p

1

cot cos
/

sin sin
cos 1 cos 1

Integrating these two equations we get 
(cos 1) (cos 1)

(cos 1) (cos 1) 0

y
x ecx

dy dx

dy x dy x
dx and

y x y x

y x c and y x c

general solution is

y x c y x c

6) Solve: 2 5 44 12 0 , obtain the singular solution also.p x p x y . 

Sol: The given equation is solvable for y only. 
2 5 4

2

4

4 12 0 ...........(1)_
4 ( , )

12
(1) . . . ,

p x p x y

p x p
y f x p

x

Differentiating w r t x

5 4 4 3

2 5
5 3

4

5

2 4 20 12 48 0

4(2 4 ) 8 ( ) 0
2

2( 2 ) ( 2 )

2 0

log log

dp dp
p x x p x p x y

dx dx

dp p x p
p x x xp

dx x

dp p
p x p x

dx x

dp p

dx x

Integrating p x k

2

4 2 3

(1)
4 12

p c x equation becomes

c c x y
2

2

3

3

6

4 12
. .

2 4 0
Using 2  in general solution we get

3 0 as the singular solution

Setting c k the general solutionbecomes

k kx y

Differentiating w r t k partially we get

x

k

y

41



7) Solve 3 24 8 0 by solving for x.p xyp y

Sol: The given equation is solvable for x only. 

y

yp
yp

dy

dp

p

y

yp

p

yp

dy

dp

y
y

yp

p

yp
p

dy

dp

ypxxyp
dy

dp

ypx
p

yp
dy

dp
xy

dy

dp
p

ytrwatingDifferenti

pyf
yp

yp
x

yxypp

23
23

2323

2323
2

2

2

23

23

4)4(2

482

12883

124)43(

01641.443

,...)1(

),(
4

8
084

          yxciscsolutiongeneraltheThus

yxcc

ycxcc

haveweyyybythroughoutDividing

ycyxycycy

haveweincyPgU

cyp

ydy

dp

p

64)4(

8)4(

084

,

084

,)1(sin

logloglog2

12

2

2
3

2

Clairaut’s Equation 
The equation of the form ( )y px f p is known as Clairaut’s equation. 

This being in the form y = F (x , p), that is solvable for y, we differentiate (1) w.r.t.x 

(dy dp dp
p p x f p

dx dx dx

42



This implies that 0 and hence p=cdp

dx
Using  in (1) we obtain the genertal solution of clairaut's equation in the form 

( )
p c

y cx f c

1. Solve: a
y px

p

Sol: The given equation is Clairaut’s equation of the form ( )y px f p , whose general solution 
is ( )y cx f c  

   Thus the general solution is a
y cx

c

Singular solution 
Differentiating partially w.r.t c the above equation we have, 

0 2

( / ) ,

/ . /
2Thus 4 is the singular solution.

a
x

c

a
c

x

Hence y cx a c becomes

y a x x a x a

y ax

2. Modify the following equation into Clairaut’s form. Hence obtain the associated general

and singular solutions 
2 0xp py kp a

2: 0, by data

2ie.,

( ).,

.,

Sol xp py kp a

xp kp a py

p xp k a
ie y

p

a
ie y px k

p

Here (1) is in the Clairaut’s form y=px+f(p) whose general solution is y = cx + f (c) 
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Thus   the general solution is a
y cx k

c

Now differentiating partially w.r.t c we have, 

2

2

0

/
Hence the general solution becomes,

y -k = 2
Thus the singular solution is (y - k) 4 .

a
x

c

c a x

ax

ax

Remark: We can also obtain the solution in the method: solvable for y. 

3. Solve the equation (px – y) (py + x) = 2p by reducing into Clairaut’s  form, taking the
substitutions X = x2 , Y = y2

2: 2

2 2

,

1., . .2
2

.,

( )( ) 2

dX
Sol X x x

dx

dY
Y y y

dy

dy dy dY dX dY
Now p and let p

dx dY dX dx dx

ie p P x
y

X
ie p P

Y

Consider px y py x p

., 2

., ( ) ( 1) 2
2., is in the Clairaut's form and hence the associated genertal solution is 

1
2

1

Thus  the required general solution of the given equat

X X X
ie P X Y P Y X P

Y Y Y

ie PX Y P P

P
ie Y PX

P

c
Y cX

c

22ion is y
1

c
cx

c

44



4) Solve 2 2 2, use the substitution , .px y py x a p X x Y y  

Sol:    Let  2 2dX
X x x

dx

2 2

,

dX
Y x y

dy

dy dy dY dX dY
Now p and let P

dx dY dX dx dx

1 . .2
2

x
P p x or p P

y
 

X
p

Y

( ) ( ) 2

2

( )( 1) 2
2

1

Consider px y py x p

X X X
P X Y P Y X P

Y Y Y

PX Y P P

P
Y PX

P

         Is in the Clairaut’s form and hence the associated general solution is 

1
2

c

c
cXY

    Thus the required general solution of the given equation is 
1

222

c

c
cxy

 
5) Obtain the general solution and singular solution of the Clairaut’s equation 3 1 0xp yp

Sol: The given equation can be written as 
3

2

2

1 s in ' ( )

( )
1

xp
y y px i theClairaut s form y px f p

p p

whose general solution is y cx f c

Thus general solution is y cx
c

. . .Differnetiating partially wr t cwe get
1/3

3

1/3 2/3
2/3 2/3

3

20

2 2
2

4 27

x
x

Thus general solutionbecomes

x
y x y x

x

or y x
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MODULE – 3 

PARTIAL DIFFERENTIAL EQUATIONS 
Introduction: 

    Many problems in vibration of strings, heat conduction, electrostatics involve two or more variables.   
Analysis of these problems leads to partial derivatives and equations involving them. In this unit we first
discuss the formation of PDE analogous to that of formation of ODE. Later we discuss some methods of
solving PDE. 

      Definitions: 

    An equation involving one or more derivatives of a function of two or more variables is called a partial    
differential equation. 

   The order of a PDE is the order of the highest derivative and the degree of the PDE is the degree of highest      
order derivative after clearing the equation of fractional powers. 

  A PDE is said to be linear if it is of first degree in the dependent variable and its partial derivative. 

  In each term of the PDE contains either the dependent variable or one of its partial derivatives, the PDE is
said to be homogeneous. Otherwise it is said to be a nonhomogeneous PDE.  

Formation of pde by eliminating the arbitrary constants 
Formation of pde by eliminating the arbitrary functions 

Solutions to first order first degree pde of the type 

      P p + Q q =R 

Formation of pde by eliminating the arbitrary  constants: 

(1) Solve:  

Sol: Differentiating (i) partially with respect to x and y, 

x

p

x

z

xa
or

a

x

x

z 1122 22

2

2

2

2

b
y

a
xz2

46



y

q

x

z

yb
or

b

y

y

z 1122
22

Substituting these values of 1/a2 and 1/b2 in (i), we get

(2) z = (x2 + a) (y2 + b)

Sol: Differentiating the given relation partially  

(x-a) 2 + (y-b) 2 + z2 = k2 …(i)

Differentiating (i) partially w. r. t. x and y, 

0
y
zz)by(,0

x
zz)ax(  

Substituting for (x- a) and (y- b) from these in (i), we get 

2
22

2 k
y
z

x
z1z  This is the required partial differential equation. 

(3) z = ax + by + cxy   ...(i) 

Sol: Differentiating (i) partially w.r.t. x  y, we get 

)ii..(cya
x
z

)iii..(cxb
y
z

It is not possible to eliminate a,b,c from relations (i)-(iii). 

Partially differentiating (ii), 

c
yx

z2

 Using this in (ii) and (iii) 

yx
zy

x
za

2

47



yx
zx

y
zb

2

Substituting for a, b, c in (i), we get 

yx
zxy

yx
zx

y
zy

yx
zy

x
zxz

222

yx
zxy

y
zy

x
zxz

2

(5) 1
c
z

b
y

a
x

2

2

2

2

2

2

 

Sol: Differentiating partially w.r.t. x, 

x
z

c
z

a
xor,0

x
z

c
z2

a
x2

2222

 Differentiating this partially w.r.t. x, we get 

2

22

22 x
zz

x
z

c
1

a
1

  or 2

22

2

2

x
zz

x
z

a
c

 : Differentiating the given equation partially w.r.t. y twice we get 

2

22

y
zz

y
z

y
z

y
z

2

22

x
zz

x
z

x
z

x
z

 Is the required p. d. e.. 

Note: 

As another required partial differential equation. 

P.D.E. obtained by elimination of arbitrary constants need not be not unique 

Formation of p d e by eliminating the arbitrary functions: 

1) z = f(x2 + y2)

48



Sol: Differentiating z partially w.r.t. x and y, 

yyxf
y

z
qxyxf

x

z
p 2).(',2).(' 2222

p /q = x / y  or   y p –x q=0   is the required pde 

(2)  z = f ( x +ct ) + g (x -ct)   

Sol: Differentiating z partially with respect to x and t, 

)(")("),(')(' 2

2

ctxgctxf
x

z
ctxgctxf

x

z

Thus the pde is 

(3) x + y + z = f(x2 + y2 + z2)

Sol:Differentiating partially w.r.t. x and y 

x

z
zxzyxf

x

z 22)('1 222

)/(
)/(1

)/(
)/(1)('2 222

yzzy

yz

xzzx

xz
zyxf

yx
y

z
xz

x

z
zy )()(  is the required pde 

 (4)  z  =  f ( xy / z ). 

Sol: Differentiating partially w.r.t. x and y 

x

z

z

xy

z

y

z

xy
f

x

z
2'

02

2

2

2

x

z

t

z

y

z
zyzyxf

y

z 22)('1 222

49



x

z

z

xy

z

x

z

xy
f

y

z
2'

}/)(/(1){/(
/

}/)(/(1){/(
/'

yzzyzx

yz

xzzxzy

xz

z

xy
f

y

z
y

x

z
x

  or xp = yq is the required pde. 

(5) z = y2 + 2 f(1/x + logy)

1: 2 2 '(1/ log )z
Sol y f x y

y y

2

1)log/1('2
x

yxf
x

z

y
y

z
y

x

z
xyxf 2)log/1('2 2

Hence 22 2y
y

z
y

x

z
x

(6) Z = xΦ(y) + y (x) 

: ( ) '( ); '( ) ( )z z
Sol y y x x y x

x y

 Substituting    )(')(' xandy

)]()([
2

xyyx
y

z
y

x

z
x

yx

z
xy

is the required  pde. 
z

y

z
y

x

z
x

yx

z
xy

2
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7) Form the partial differential equation by eliminating the arbitrary functions from

z = f(y-2x) + g(2y-x)   (Dec 2011) 

Sol: By data, z = f(y-2x) + g(2y-x) 

2 ( 2 ) (2 )z
p f y x g y x

x

2

2

2

2

2

( 2 ) 2 (2 )

4 ( 2 ) (2 )...............(1)

2 ( 2 ) 2 (2 ).........(2)

( 2 ) 4 (2 )................(3)

(1) 2 (2) 2 6 ( 2 )...........

z
q f y x g y x

y

z
r f y x g y x

x

z
s f y x g y x

x y

z
t f y x g y x

y

r s f y x

2 2 2

2

...(4)

(2) 2 (3) 2 3 ( 2 )............(5)
(4) (5)

2 2 2 5 2 0
2

2 5 2 0

s t f y x

Nowdividing by we get

r s
or r s t

s t

z z z
Thus is the required PDE

x x y y

LAGRANGE’S FIRST ORDER FIRST DEGREE PDE: Pp+Qq=R 

(1) Solve: yzp + zxq = xy. 

: dx dy dz
Sol

yz zx xy

Subsidiary equations are 

From the first two and the last two terms, we get, respectively 
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0 ydyxdxor
x

dy

y

dx
  and  .0 zdzydyor

y

dz

z

dy
 

Integrating we get   x2 - y2 = a,   y2 – z2 = b. 

Hence, a general solution is 

Φ(x2-y2, y2 –z2) = 0   

(2) Solve: y2p - xyq = x(z-2y) 

2:
( 2 )

dx dy dz
Sol

y xy x z y

From the first two ratios we get 

x2 + y2 = a           from the last ratios two we get 

2
y

z

dy

dz
 

from the last ratios two we get 

2
y

z

dy

dz
 ordinary linear differential equation hence 

yz – y2= b 

solution is   Φ( x2 +  y2,  yz – y2) = 0  

(3) Solve : z(xp – yq) = y2 –x2 

2: dx dy dz
Sol

zx zy y x

0,d(xy)or      0or      , ydxxdy
y

dy

x

dx
 

on integration, yields   xy = a 
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xdx +ydy + zdz = 0   x2 + y2 + z2 = b 

Hence, a general solution of the given equation   

  Φ(xy,x2+y2+z2)=0 

(4) Solve: 
xy

yx
q

zx

xz
p

yz

zy

: yz zx xy
Sol dx dy dz

y z z x x y

     x dx + y dy + z dz = 0  …(i) 

         Integrating (i) we get 

    x2 + y2 + z2 = a 

yz dx + zx dy + xy dz = 0   …(ii) 

Dividing (ii) throughout by xyz and then integrating, 

we get  xyz = b 

  Φ( x2 + y2 + z2, xyz ) = 0   

(5) (x+2z)p + (4zx – y)q = 2x2 + y 

2: ..( )
2 4 2

dx dy dz
Sol i

x z zx y x y
 

Using multipliers 2x, -1, -1 we obtain 2x dx – dy – dz = 0 

Using multipliers y, x, -2z in (i), we obtain 

y dx + x dy – 2z dz = 0 which on integration yields 

xy – z2 = b                                           ….(iii) 

5) Solve sin sin 2sin 0 0xy yz x y for which z y when x and z

when y is an odd multiple of
2

. 
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Sol: Here we first find z by integration and apply the given conditions to determine the arbitrary 

functions occurring as constants of integration. 

The given PDF can be written as yx
y

z

x
sinsin

Integrating w.r.t x treating y as constant, 

sin sin ( ) sin cos ( )z
y x dx f y y x f y

y

Integrating w.r.t y treating x as constant 
cos sin ( ) ( )

cos ( cos ) ( ) ( ),

( ) ( ) .

cos cos ( ) ( )

, 2sin 0. sin (1)

2sin ( sin ).1 ( ) (cos 0 1)

( ) ( ) sin cos

z x y dy f y dy g x

z x y F y g x

where F y f y dy

Thus z x y F y g x

z
Alsoby data y when x U g this in

y

y y f y

Hence F y f y dy y dy y

Wi , (2) cos cos cos ( )

sin 0 (2 1) (3)
2

0 cos cos(2 1) cos c(2 1) ( )
2

cos (2 1) 0. 0 0 0 ( )
2

Thus the solution of the PDE is given by
z=cos

th this becomes z x y y g x

U g thecondition that z if y n in we have

x n x n g x

But n and hence g x

x cosy + cosy

Method of Separation of Variables 

1) Solve by the method of variables 3 2 0, ( ,0) 4 x

xu u giventhat u x e

Sol: 3 2 0..............(1)u
Given

x
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Assume solution of (1) as

U=XY where X=X(x); ( )

3 ( ) 2 ( ) 0

Y Y y

u
xy xy

x

 

23 2 0

3

dX dY dX dY
Y

dx dy X dx Y dy

dX dX
Let K kdx

X dx X

1

1 1

3

3log log
3

kx
c

Kx
X kx c X c

X e

2

1

2
2

3

1

2
6 3

3
3

2
2

log
2
(2)&(3) (1)

( ) 4

. ., 4 4
4 & 3

4 is required solution.

ky
c

x y
K c c

x

x kxk
x

x y

dY dY Kdy
Let k

Y dy Y

Kdy
Y c Y e

Substituting in

U e

Also u x o e

i e e Ae e Ae

Comparing we get A K

U

2) Solve by the method of variables 54 3 , (0, ) 2 yu
u giventhat u y e

dx y

Solution: 4 u
Given u

x y

Assume solution of (1) as

 ( ); ( )u XY where X X x Y Y y
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4 ( ) ( ) 3

14 3 3

XY XY XY
x

dX dY dX dY
Y X XY

dx dy X dx Y dy

1, 3dX dY
Let k k

X dx Y dy

1 2

1 2 1 2

1 2

34

3 3
4 4

5

35

var int

log , log 3
4

0 2

2 2 2

kx
c k y c

kx kx
k y k yc c c c

y

k yy

Separating iables and egrating we get

kx
X c Y k y c

X e and Y e

Hence u XY e e Ae where A e

put x and u e

The general solutionbecomes

e Ae A and k

Pa

5
22
x

y

rticular solutionis

u

APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS: 

Various possible solutions of standard p.d.es by the method of separation of 
variables. 

We need to obtain the solution of the ODEs by taking the constant k equal to 

i) Zero ii) positive: k=+p2 iii) negative: k=-p2

Thus we obtain three possible solutions for the associated p.d.e 

Various possible solutions of the one dimensional heat equation ut =c2uxx by the method of
separation of variables. 

Consider 
2

2
2

u
c

t

Let u= XT where X=X(x),T=T(t) be the solution of the PDE 

Hence the PDE becomes 
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2 2
2

2

XT XT dT d X
c or X c

t x dt dx

Dividing by c2XT we have
2

2

1 dT d X

c T dt X dx

Equating both sides to a common constant k we have 

2

2

1 d X

X dx
=k      and   2

1 dT

c T dt
 =k 

2

2 0d X
kX

dx
  and

2 0dT
c kT

dt

2 0D k X   and 2 0D c k T

Where D2 =
2

2

d

dx
 in the first equation and D = d

dt
in the second equation 

Case (i) : let k=0 

AEs are m=0 amd m2=0 amd m=0,0 are the roots

Solutions are given by 

T = 0
1 1 2 3 2 3

tc e c and X c x c e c x c

Hence the solution of the PDE is given by 

U= XT= 1 2 3c c x c

Or u(x,t) =Ax+B where c1c2=A and c1c3=B 

Case (ii) let k be positive say k=+p2

AEs are m –c2p2=0 and m2-p2=0

m= c2p2 and m=+p

Solutions are given by 

2' ' '
1 2 3

c p t px pxT c e and X c e c e
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Hence the solution of the PDE is given by 

2'
1

c p tu XT c e .( '
2

px pxc e c e )

Or u(x,t) = 2'
1

c p tc e (A’ pxe +B pxe ) where c1’c2’=A’ and c1’c3’=B’ 

Case (iii): let k be negative say k=-p2

AEs are m+ c2p2=0 and m2+p2=0

m=- c2p2   and m=+ip

solutions are given by 

2'' '' ''
1 2 3cos sinc p tT c e and X c px c px  

Hence the solution of the PDE is given by 

2'' '' ''
1 2 3.( cos sin )c p tu XT c e c px c px  

2 '' ''( , ) ( cos sin )c p tu x t e A px B px

1. Solve the Heat equation
2

2
2

u
c

t
given that u(0,t)=0,u(l,0)=0 and u(x,0)=    100x/l 

Soln:  
0

2 100 sin
l

n

x n x
b dx

l l l
= 2

0

200 sin
l

n x
x dx

l

22

0

. cos sin200 1
/ /

l

n

n x n x
x

lb
l n l n l

1

2

200 1 200 1200 1. cos .
n

nb l n
l n n n

The required solution is obtained by substituting this value of nb

Thus 
2 2 21

2
1

200 1
( , ) sin

n n c t

n

n x
u x t e

n l l
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2. Obtain the solution of the heat equation
2

2
2

u
c

t
 given that u(0,t)=0,u(l,t)and 

u(x,0) =f(x)where 

2 0
2(

2
2

Tx l
in x

l
f x

l
l x in x l

l

Soln:    
0

2 ( )sin
l

n

n x
b f x dx

l

     
2

0
2

2 2 2sin ( )sin

l

l

n

l

Tx n x Tx n x
b dx l x dx

l l l l l

2

0
2

4 sin ( )sin

l

l

l

T n x n x
x dx l x dx

l l l

     2

8 sin
2n

T
b

n

The required solution is obtained by substituting this value of bn 

Thus 
2 2 2

2 2 2
1

8( , ) sin sin
2

n c t

n

T n n x
u x t e

n l l

3. Solve the heat equation
2

2

u

t
 with the boundary conditions u(0,t)=0,u(l,t)and 

u(x,0) =3sin x 

Soln: 
2

( , ) ( cos sin )............................(1)p tu x t e A px B px  

Consider u(0,t)=0   now 1 becomes 

0=
2p te (A)  thus A=0 

Consider u(1,t)=0 using A=0 (1) becomes 

0=
2p te (Bsinp) 

Since B≠0,sinp=0or p=n
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2 2 2

( , ) ( sin )
n c t

u x t e B n x

In general 
2 2 2

1
( , ) sin

n c t

n

n

u x t b e n x

Consider u(x,0)= 3 sin n x and we have 

3 1 2 3sin sin sin 2 sin 3n x b x b x b x

Comparing both sides we get 1 2 33, 0, 0b b b

We substitute these values in the expanded form and then get 

2

( , ) 3 (sin )
t

u x t e x  

Various possible solutions of the one dimensional wave equation utt =c2uxx by the method of
separation of variables. 

Consider 
2

2
2

u
c

t x

Let u= XT where X=X(x),T=T(t) be the solution of the PDE 

Hence the PDE becomes 

2 2
2

2 2 2 2

XT XT d T d X
c or X c

t x dt dx

Dividing by c2XT we have
2

2 2 2

1d T d X

c T dt X dx

Equating both sides to a common constant k we have 

2

2

1 d X

X dx
=k      and   

2

2

1 d T

c T dt
 =k 

2

2 0d X
kX

dx
  and

2
2

2 0d T
c kT

dt
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2 0D k X   and 2 0D c k T

Where D2 =
2

2

d

dx
in the first equation and D2 =

2

2

d

dt
in the second equation 

Case(i) : let k=0 

AEs are m=0 amd m2=0 amd m=0,0 are the roots

Solutions are given by 

T = 0
1 1 2 3 2 3

tc e c and X c x c e c x c

Hence the solution of the PDE is given by 

U= XT= 1 2 3c c x c

Or u(x,t) =Ax+B where c1c2=A and c1c3=B 

Case (ii) let k be positive say k=+p2

AEs are m –c2p2=0 and m2-p2=0

m= c2p2 and m=+p

Solutions are given by 

2' ' '
1 2 3

c p t px pxT c e andX c e c e

Hence the solution of the PDE is given by 

2'
1

c p tu XT c e .( '
2

px pxc e c e )

Or u(x,t) =
2'

1
c p tc e (A’ pxe +B pxe ) where c1’c2’=A’ and c1’c3’=B’ 

Case (iii): let k be negative say k=-p2

AEs are m+ c2p2=0 and m2+p2=0

m=- c2p2   and m=+ip

Solutions are given by 

2'' '' ''
1 2 3cos sinc p tT c e and X c px c px  
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Hence the solution of the PDE is given by 

2'' '' ''
1 2 3.( cos sin )c p tu XT c e c px c px  

2 '' ''( , ) ( cos sin )c p tu x t e A px B px

1. Solve the wave equation utt=c2uxx subject to the conditions  u(t,0)=0 ,u(l,t)=0,

,0 0u
x

t
and u(x,0) =u0sin3( x/l)

Soln: 
1

, sin cosn
n

n x n ct
u x t b

l

Consider u(x,0) =u0sin3( x/l)

1
,0 sinn

n

n x
u x b

l

3
0

1
sin sinn

n

x n x
u

l

3
0

1

3 1 3sin sin sin
4 n

n

x x n x
u

l l l

comparing both sides we get 

0
1

3
4
u

b , 2 0b  , 0
3 4 5, 0 0

4
u

b b b  , 

Thus by substituting these values in the expanded form  we get 

03 3( , ) sin cos sin cos
4
u x ct x ct

u x t
l l l l

2. Solve the wave equation utt=c2utt subject to the conditions u(t,0)=0 ,u(l,t)=0,

,0 0u
x

t
  when t=0and u(x,0) =f(x) 

0
1 2 3

3 3 2 3sin sin sin sin sin
4
u x x x x x

b b b
l l l l l
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Soln: 
1

, sin cosn
n

n x n ct
u x t b

l

Consider u(x,0)=f(x) then we have 

Consider u(x,0) = 
1

sinn
n

n x
b

l

F(x) = 
1

sinn
n

n x
b

l

The series in RHS is regarded as the sine half range Fourier series of f(x) in (0,l) and hence 

0

2 ( )sin
l

n

n x
b f x dx

l

Thus we have the required solution in the form 

 
1

, sin cosn
n

n x n ct
u x t b

l

DOUBLE INTEGRAL 
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PROBLEMS: 
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Evaluation of a Double Integral by Changing the Order of Integration 

 Evaluation of a Double Integral by Change of Variables 

Applications to Area and Volume 
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68



69



70
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Triple Integrals: 

The treatment of Triple integrals also known as volume integrals in 3R  is a simple and straight 
extension of the ideas in respect of double integrals. 

Let f(x,y,z) be continuous and single valued function defined over a region V of space. Let V be 
divided into sub regions , .......v v v  in to n parts. Let ( , , )x y z  be any arbitrary point 
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within or on the boundary of the sub region kv . From the sum 
1

( , , )
n

k k k k

k

s f x y z v

…………(1) 

If as n  and the maximum diameter of every. 

Sub region approaches zero the sum (1) has a limit then the limit is denoted by ( , , )
V

f x y z dv

This is called the triple integral of f(x,y,z) over the region V. 

For the purpose of evolution the above triple integral over the region V can be expressed as an 
iterated integral or repeated integral in the form  

( ) ( , )

( ) ( , )

( , , ) ( , , )
h x x yb

V a g x x y

f x y z dxdydz f x y z dz dy dx

Where f(x,y,z) is continuous in the region V bounded by the surfaces z= ( , ),z x y ( , )z x y ,
( ), ( ), ,y g x y h x x a x b . the above integral indicates the three successive integration to be 

performed in the following order, first w.r.t z, keeping x and y as constant then w.r.t y keeping x 
as constant and finally w.r.t.x. 

Note: 

When an integration is performed w.r.t a variable that variable is eliminated completely 
from the remaining integral. 
If the limits are not constants the integration should be in the order in which dx, dy, dz is 
given in the integral. 
Evaluation of the integral may be performed in any order if all the limits are constants. 
If f(x,y,z) = 1 then the triple integral gives the volume of the region. 

1. Evaluate
1 2 2

2

0 0 1

xyz dxdydz

21 2 2 1 2 2
2

0 0 1 0 0 1
21 2

2

0 1

:
2

2
2

x yz
Sol xyz dxdydz dydz

y z
yz dydz
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21 2 2 2 2

0 0
21 2

2

0 0
21 2

0 0

2
2 4

4

3
4

1

y z y z
dz

y z
y z dz

y z
dz

2. Evaluate
2 2 2

0

(
a a a

x y z dxdydz

3
2 2 2 2 2

0 0 0 0 0 0

3
2 2

0

3
2 2

0

3 3
2

0 0

4 4
2

0

4 4 2 3

0
5 5

: ( )
3

3

]
3

3

3

3 3 3

3

aa a a a a

a a

a a

aa

a

a

x
Sol x y z dxdydz y x z x dydz

a
y a z a dydz

a
y a z a dy dz

a y y a
z ay dz

a
a z dz

a z a z a z

a 5

5

3
a

a
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3. Evaluate

2 2 22

0 0 0

a x ya a x

x y z dx dy dz

2 2 22

2 2 2
2

2

2

2 2

0 0 0

2

0 0

2 2 2

0

2 3 3

0

2 2 3 2 2

0 0

4 5 2 3

0

:

2

(a x y )dydx
2

1 (xya x y )
2

1 xy a x y
2 2 2 2

1 (a x x 2a x )
8

1
8

a x ya a x

a x y
a a x

a a x

a a x

a xa

a

Sol I x y z dz dy dx

xyz
dy dx

xy

y x dy dx

y x
dx

a
2 6 2 4 6

4

0

2
2 6 4 48

a

x x a x a

4. Evaluate
R

xyz dx dy dz  over the region R enclosed by the coordinate planes and the 

plane x + y + z=1 

Sol:  In the given region, z varies from 0 to 1 – x – y 

        For z-=0, y varies from 0 to 1 – x. For y=0,x varies from 0 to 1. 
11

0 0 0

1
2

0

1 (1 x y)
2

x yx

R x y z

x

x y z dx dy dz x y z dx dy dz

x y dy dx
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1 1
2 2 3

0

1
2 2 3 4

0
11 6

4

0 0

1 (1 x) 2(1 x) y
2

1 1 2 1(1 x) (1 x) (1 x)(1 x) (1 x)
2 2 3 4

1 1 (1 x)(1 x)
24 24 30

1
720

x

x y y dy dx

x dx

x dx

Change of variable in triple integrals 
Computational work can often be reduced while evaluating triple integrals by changing 

the variables x, y, z to some new variables u, v, w, which related to x,y,z and which are 

such that the 

Jacobian  
( , , ) 0
( , , )

x x x

u v w

x y z y y y
J

u v w u v w

z z z

u v w

 

It can be proved that    

( , , )

( , , ) ........(1)
R

R

f x y z dxdydz

u v w Jdudvdw

R is the region in which (x,y,z) vary and R  is the corresponding  region in which 

(u,v,w)vary and ( , , ) ( , , ), ( , , ), ( , , )u v w f x u v w y u v w z u v w  

Once the triple integral wrt (x,y,z) is changed to triple integral wrt (u,v,w) by using the 

formula(1), the later integral may be evaluated by expressing it in terms of repeated 

integrals with appropriate limit of integration  
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Triple integral in cylindrical polar coordinates 
Suppose (x,y,z)  are related to three variables ( , , )R z  through the the relation

cos , sin , , ,x R y R z zthenR z  are called cylindriocal polar coordinates; 

In this case,  

( , , )
( , , )

x x x

R

x y z y y y
J

R z R z

z z z

R z

Hence dxdydz has to be changed to R dR d  dz 

Thus we have  

( , , )

( , , )
R

R

f x y z dxdydz

R z RdRd dz

R is the region in which  ( , , )R z vary,  as (x,y,z) vary in R 

( , , ) ( cos , sin , )R z f R R z   

Triple integral in spherical polar coordinates 
Suppose (x,y,z) are related to three variables ( , , )r   through the relations 

sin cos , sin sin , cosx r y r z r . Then ( , , )r  are called spherical polar 

coordinates. 

PROBLEMS: 

1) If R is the region bounded by the planes x=0,y=0,z=0,z=1 and the cylinder 2 1x

.Evaluate the integral
R

xyzdxdydz  by changing it to cylindrical polar coordinates. 

Sol: Let ( , , )R z  be cylindrical polar coordinates. In thegiven region, R varies from 0 

to 1, varies from 0 to 
2

 and z varies from 0 to 1. 

1
2

0 0 0
( cos )( sin )

R
xyzdxdydz R R zR dR d dx
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1 3 2
0 0 0

21 3

0
0

1 3

0

sin cos

1 cos 2
4
1
4
1

16

R dR zdz

R dR

R dR

2) Evaluate
R

xyzdxdydz over the positive octant of the sphere by changing it to 

spherical polar coordinates. 

Sol: In the region, r varies from 0 to a,  varies from 0 to 
2

  and  varies from 0 to. 

The relations between Cartesian and spherical polar coordinates are 

sin cos , sin sin , cos .....(1)x r y r z r  

Also 2 sindxdydz r drd d

We have 2 2 2 2.....(2)x y z a

22
0 0 0

52
0
6

6

sin cos sin sin cos sin

sin cos sin

cos cos0
96

48

a

r
R

xyzdxdydz r r r r drd d

r drd d

a

a
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MODULE-4 

 INTEGRAL CALCULUS 
Application of double integrals: 

Introduction: we now consider the use of double integrals for computing areas of plane and 
curved surfaces and volumes, which occur quite in science and engineering. 

Computation of plane Areas: 

Recall expression 

2

1

2

1

( ) (y)

( ) (y)

( ) (y)

( ) (y)

( , ) ( , ) ( , ) ( , )

..........(1)

y x xb

A R a y x c x

y x xb

A R a y x c x

f x y dA f x y dxdy f x y dydx f x y dxdy

dA dxdy dydx dxdy

The integral 
A

dA  represents the total area of the plane region R over which the iterated integral 

are taken . Thus (1) may be used to compute the area A. nNote that dx dy is the plane area 
element dA in the Cartesian form. 

Also 
R

dxdy ,
R

rdrd rdrd is the plane area element in polar form. 

Area in Cartesian form 

Let the curves AB and CD be 1 1 2 2( ) ( )y f x andy f x . Let the ordinates AC and BD be x=a and 
x=b. So the area enclosed by the two curves and x=a and x=b is ABCD. Let p(x,y) and be
Q(x x, y y) two neighbouring points, then the area of the small rectangle PQ= x y

Area of the vertical strip =
22

1 1
y 0

x y x dylim
yy

y y

 

Since x  the width of the strip is constant throughout, if we add all the strips from x=a to x=b 
we get 

The area ABCD = 2 2

1 1
y 0

x dy dx dylim
y ybh

a y a y
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Area=
2

1

dxdy
yb

a y

Area in Polar form: 

1. Find the area of the ellipse 12

2

2

2

b

y

a

x  by double integration . 

Soln: For the vertical strip PQ, y varies from y =0 to 22 xa
a

b
y when the strip is slided 

from CB   to A, x varies from x=0 to x=a 

Therefore    Area of the ellipse=4 Area of CAB

22

00

4
xa

a

b

y

a

x

dydx  

ab
a

a

ba

a

b

xaxax

a

b
dxxa

a

b

dxydxdy

a
a

xa
a

ba
xa

a

b

a

2
.

2
.41sin

2
4

2
sin

22
44

44

2
1

2

0

1
222

22

0

0
000

22

22

2. Find the area between the parabolas y2=4ax  and  x2 = 4ay

Soln: We have y2=4ax ………………… (1) and  x2 = 4ay…………………(2).

Solving (1) and (2) we get the point of intersections (0,0) and (4a,4a) . The shaded portion  
in the figure is the required area divide the arc into horizontal strips of width y         

x varies from p,
a

y

4

2

  to   ayQ 4          and then y varies from O, y=0 to A, y=4a . 

    Therefore the required area is 

2
2

444

0
44

ayaya

y
y

a
a

dy dx dy x
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4
3

4 2 32

0

0

3 3
2

2 2 2

14 4 . 34 4 3
2

4 4
3 12

32 16 16
3 3 3

a

a
y y y

ay dy a
a a

a
a

a

a a a

Computation of surface area (using double integral): 

      The double integral can made use in evaluating the surface area of a surface. 

Consider a surface S in space .let the equation of the surface S be z=f(x,y) . it can be that surface 
area of this surface is  

Given by      dxdy
y

z

x

z
s

A

2
1

22

1  

Where A the region representing the projection of  S on the xy-plane. 

Note that (x,y)vary over A as (x,y,z) vary over S. 

Similarly if B and C  projection of S on  the yz-plane and zx - plane respectively , then 

and

dzdx
x

z

z

z
s

dydz
y

z

z

z
s

A

A

2
1

22

2
1

22

1

1

1) Find the surface area of the sphere x2+y2+z2=a2.

Soln: the required surface arc is twice the surface are of the upper part of the given sphere, 
whose equation is 

1
2 2 2 2

1
2 2 2 2

0

, , 2

z a x y z

z
this gives a x y x

x
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1
2 2 2 2

1
2 2 2 2

2 2

2 2 2

1 1
22 2 2 2

2 2 2

,

1

, , , , ,

2 1 2
A

x

a x y

z y
similarly

x
a x y

z z a

x x a x y

hence the required surface area is

z z a
s dxdy dxdy

x y a x y

Where A the projection of the sphere on the xy-plane . we note that this projication is the area 
bounded by circle x2+y2=a2.hence in A ,Ѳ varies from 0to2

 And r varies from 0to a, where (r, Ѳ) are the polar coordinates. put x=cos θ ,y=sin θ dxdy=rdrd θ 

22
0

2
2

0
0

22
2

0

0
22

2

0

2

0 0
22

4222

22

aaadarada

rdr
ra

r
drdrd

ra

a
s

a

aa

r

2) Find the surface area of the portion of the cylinder x2+z2=a2 which lies inside the
cylinder x2+y2+=a2.

Soln: Let s1 be the cylinder  x2+z2=a2 and s2 be the cylinder x2+z2=a2 for the cylinder

1

22 2 2 2 2

2 2 2 2

0

,1 1 0

z x z
s

x z y

z z x z x a
so that

x y z z a x

The required surface area is twice the surface area of the upper part of the cylinder S1 which lies 
inside the cylinder x2+y2=a2. Hence the required surface area is

,212
22

2
1

22

dA
xa

a
dA

y

z

x

z
s

aA
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Where A is the projection of the cylinder  S1 on the x y plane that  llies  with in the cylinder 

S2:x2+y2=a2. In Ax varies from –a toa and for each x,y varies from 2222 xatoxa

2

22

22

22

22

8444

212

12

2

22

22

22

22

aaaaxadxa

dxxa
xa

a

dxy
xa

a

dydx
xa

a
s

a

a

a

a

a

a

xa

xa

a

a

xa

xay

a

ax

       Volume underneath a surface: 

Let Z=(x,y)be the equation of the surface S. let P be a point on the surface S.let  A denote the 
orthogonal projection of  S on the xy- plane . divide it into  area elements by drawing thre lines 
parallel to the axes of x and y on the elements  yx  as base ,erect a cylinder  having generators      
parallel  to QZ and meeting the surface S in an  element of area  s  .the volume underneath the 
surface bounded by S, its projection A on xy plane and the cylinder with generator through the 
boundary curve of A on the xy plane and parallel to OZ is given by, 

AA

Zdxdydxdyyxfv ,

1) Find the volume of the ellipsoid 12

2

2

2

2

2

c

z

b

y

a

x  

     Sol: Let S denote the surface of the ellipsoid above the xy-plane .the equation of this surface 

is

yxf
b

y

a

x
czor

z
c

z

b

y

a

x

,1,

01

2
1

2

2

2

2

2

2

2

2

2

2

The volume of the region bounded by this surface and the xy-plane gives the volume v1of the 
upper half of the full ellipsoid .this volume is given by dxdyyxv

A

,1  

Where A  is the area of the projection of S on the xy plane . 
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Note that A is the area bounded by the ellipse 12

2

2

2

b

y

a

x  

ac

abcdxdy
b

y

a

x
v

A

3
2

3
21

2
1

2

2

2

2

1

The volume of the full ellipsoid is 2v1.thus the required volume is abcabcv
3
4

3
2.2  

 Volume of revolution using double integrals: 

Let y=f(x) be a simples closed plane curves enclosing an area A. suppose this  curve is revolved 
about the x-axis. Then it can be proved that the volume of the solid generated is given by the 
formula .  

ydxdyydAv
A

22

In polar form this formula becomes drdrv
A

sin2

1) Find the volume generated by the revolution of the cardioids r =a (1+cosθ) about the
intial line. 

Sol: The given cardioids is symmetrical about the initial line θ=0.therfore the volume generated 
by revolving the upper part of the curve about the initial line is same as the volume 
generated by revolving the whole the curve .for the upper part of the curve θ varies form 0 
to π and for each θ , r varies from  0 to a(1+cosθ),therefore the required volume is

3

0

43

3

0

3

cos1

0

3

0

0

)cos1(

0

2

3
8

4
cos1

3
2

sincos1
3

2

3
sin2

sin2

a
a

d
a

d
r

drdrv

a

a

r
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 Computation of volume by triple integrals: 

Recall the expression, 

b

a

xh

xg

yx

yxRv

dxdydzzyxdxdydzzyxfdvzyxf

,

,

,,,,,,

As a particular case ,where f(x,y,z)=1,this expression becomes 

b

a

xh

xg

yx

yxRv

dzdydxdxdydzdv

,

,

………………………..(1) 

The integral 
v

dv  represents the volume V of the region R. thus expression (1)may be used to 

compute V. 

If(x,y,z) are changed to (u,v,w)we obtained the following expression for the volume, 

*RRv

jdudvdwdxdydzdv …………………………(2) 

Taking (u,v,w)= (R,φ,z) in (2) 

We obtained 
Rv

dzRdRddv …………….(3) an expression for volume in terms of 

cylindrical  polar coordinates. 

Similarly 
Rv

ddrdrdv sin2  an expression for volume in terms of spherical polar 

coordinates. 

PROBLEMS: 

1) Find the volume common to the cylinders x2+y2=a2 and x2+z2=a2

Soln: In the given region  z varies from 22 xa  to 22 xa  and y varies from 
22 xa  to  22 xa .for z=0, y=0 x varies from –a to a       

Therefore, required volume is 

2 2 2 2

2 2 2 2

a a x a x

x a y a x z a x

v dzdydx
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2
2

2 2 2

2

2

2

2

2

2

2 2

2

2

2 2 2 2

3
2 2 2

3 3
3 3

2

2

2

2 2

4 4
3

4
3 3

a
a a x

a a a x

a a x

a a

a

a

a
a

aa

a a

a

a

aa

a a

z dydx

a x dydx

a x dy dx

a x y dx

a x a x dx

x
a x dx a x

a a
a a

3 3
3 2 164

3 4
a a

a

2) Find the volume bounded by the cylinder X2+Y2=4 and the planes y+z=3 and z=0

Soln: Here z varies from 0 to 3-y, y varies from () to () and x varies from -2 to 2 

Required volume 

2

2

2 2

2 2

22

22

32

2 04

3
32 4 2 4

2 0 24 0

42 4 2 2

2 2 44

3 3
2

yx

x zx

y
yx x

x x

xx

xx

V dzdydx

dx dy dz dx dy z

y
dx y dy dx

86



2 2
2

2

22
2 2 1

22

1

43 4 3 4
2

46 4 6 4 sin
2 2 2

26 2sin 2sin 12 12
2 2 2 2

x
x x dx

x
x dx x

   Curvilinear coordinates: 

         Introduction: the cartesian co-ordinate system is not always convenient to solve all sorts of 
problems. Many a time we come across a problem having certain symmetries which decide the 
choice of a co ordinates systems .our experience with the cylindrical and spherical  polar co-
ordinates systems places us in a good position to analyse general co-ordinates systems or 
curvilinear coordinates. Any suitable set of three curved surface can be used as reference surface 
and their intersection as the reference axes. Such a system is called curvilinear system. 

Definition: 

The position of a point P(x,y,z)in Cartesian co-ordinates system is determined by intersection of 
three mutually perpendicular planes x=k1, y=k2, and z=k 3  where ki (i=1,2,3) 

 Are constants in curvilinear system, the axes will in general be curved. Let us the denote the 
curved coordinate axis by and respectively. 

It should be noted that axis is the intersection of two surfaces u1= constant  and u2=constant and 
so on. 

Cartesian coordinates (x,y,z) are related to (u1,u2,u3) by the relations which can be expressed as 
x=x(u1,u2,u3);   y=y(u1,u2,u3): z= z(u1,u2,u3)…….(1) 

Equation (1) gives the transformation equation from 1 coordinates system to another. 

The inverse transformation equation can be written as u1= u1 (x,y,z), u2= u2 (x,y,z), u3= u3 
(x,y,z)……(2). 

(1) And (2) are called transformation of coordinates. 

Each point p(x,y,z) in space determine a unique triplet of numbers (u1,u2,u3) and conversely to 

each such triplet there is a unique point in space. The trial (u1,u2,u3) are called curvilinear 

coordinates of the point p. 
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Unit vectors and scale factors: 

Let kzjyixr
 ˆˆ be the position vector of the point p. then the set of equation x=x(u1,u2,u3), 

y=y(u1,u2,u3),z=z(u1,u2,u3) can be written as 321 ,, uuurr


A tangent vector to the u curve at p (for which u and u are constant ) is 
1u

r


The unit tangent vector in this direction is 

So that where 
1

1
u

r
h



1
11 ˆ

u

r
eh



Similarly if 32 eande
 and are unit tangent vector to the u and u curves at p respectively.

 Than  

2

2

2

2
2

h

u

r

u

r

u

r

e









So that
2

22 ˆ
u

r
eh



And     
3

33 ˆ
u

r
eh


 (   where    

3
3

u

r
h



) 

The quantities h1, h2 and h3 are called scale factors. The unit vectors are in the directions of 
increasing u1, u2, and u3 respectively. 

 Relation between base vectors and normal vectors: 

We have: 
1 1 2 2 3 3

1 2 3

1 2 3
1 1 2 2 3 3

ˆ ˆ ˆ; ; ;

1 1 1;

r r r
h e h e h e

u u u

r r r
e e e

h u h u h u

  

  
  

1

1

1

1
2

h

u

r

u

r

u

r

e








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1
1 1 1 1

2
2 2 2 2

3
3 3 3 3

1 2 3
1 1 2 2 3 3

2
1

1 ˆˆ ˆ. ;;

1 ˆ

1 ˆˆ ˆ

ˆ ˆ

1 1 1ˆ ˆ ˆ. ; . ; .

1ˆ. ; .

x y r
i e e i j k

h u u u

x y r
e i j k

h u u u

x y r
e i j k

h u u u

r xi yj zk

x x x
e i e i e i

h u h u h u

y
e j e j

h u




 







  


3

2 2 3 3

1 2 3
1 1 2 2 3 3

1 ˆ.

1 1 1ˆ ˆ ˆ. ; . ; .

y
e j

h u h u

z z z
e k e k e k

h u h u h u



  

 Elementary arc length: 

1 2 3

1 2 3
1 2 3

1 1 1 2 2 2 3 3 3

, ,

ˆ ˆ ˆ. ;

Let r r u u u

r r r
dr du du du

u u u

i e dr e h du e h du e h du

 

  




If ds represents the differential arc distance between two neighbouring points 

2
3

2
3

2
2

2
2

2
1

2
1

2
333222111333222111

2
332211321

,,,,,

ˆˆˆ.ˆˆˆ.,,,

,,,,

duhduhduhdsor

duheduheduheduheduheduherdrddsthen

duuduuduuanduuu


On the curve u1 cure u2 and u3 are constants 1
1

1132 0 du
u

r
duhdsdudu



Similarly 3322 , duhdsduhds
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Elementary volume element: 

Let p be one of the vertices of an infinitesimal parallelepiped. The length of the edges of the 
parallelepiped are 11duh , 22duh , 33duh  

 Volume of the parallelepiped =dv=h1 h2 h3  du1 du2 du3 is called the volume element. 

dv= 333222111 ˆ)]ˆ)(ˆ[( duheduheduhe

v=
),,(

),,(

321 uuu

zyx  du1 du2 du3 

=
321 uuu

xyz
j  du1 du2 du3 

Jacobian is positive since each h1, h2, h3 of are positive. 

Expression for 2,, andFcurlFdiv


 in orthogonal curvilinear coordinates: 

Suppose the transformations from Cartesian coordinates x,y,z to curvilinear coordinates 321 ,, uuu

be x=f( 321 ,, uuu ), y=g( 321 ,, uuu ), z=h( 321 ,, uuu ) where f,g,h are single valued function with 
continuous first partial derivatives in some given region. The condition for the function f,g,h to 
be independent is if the jacobian  

),,(
),,(

321 uuu

zyx =

321

321

321

u

z

u

z

u

z

u

y

u

y

u

y

u

x

u

x

u

x

0  

When this condition is satisfied, 321 ,, uuu  can be solved as single valued functions odf x, y and z 
with continuous partial derivatives of the first order. 

Let p be a point with position vector kzjyixpo
 ˆˆ  in the Cartesian form. The change of 

coordinates to 321 ,, uuu  makes r
  a function of 321 ,, uuu . The vectors

1u

r


, 
2u

r


, 
3u

r


 are along 
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tangent to coordinate curves 332221 ,, cucucu . Let 1̂e , 2ê , 3ê  denote unit vector along 

these tangents. Then 
1u

r


= 11̂he , 22
2

ˆ he
u

r


33
3

ˆ he
u

r


Where h1=
1u

r


,  h2= 
2u

r


,  h3= 
3u

r


If 1ê , 2ê , 3ê   are such that 1̂e . 2ê =0, 2ê . 3ê =0, 3ê .  1̂e =0 

Then the curvilinear coordinates will be orthogonal and 1ê = 2ê x 3ê , 2ê = 3ê x 1̂e 3ê = 1̂e x 2ê

Now r
 = r

 ( 321 ,, uuu ) rd


1
1

du
u

r


+ 2
2

du
u

r


3
3

du
u

r


 Gradient in orthogonal curvilinear coordinates: 

 Let Φ(x,y,z) be a scalar point function in orthogonal curvilinear coordinates. 

321 ˆˆˆ eeeletgrad 1where 2 , 3 are functions of  321 ,, uuu

321

3

3
3

2

2
2

1

1
1
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u
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u
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u

d




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Are vectors along normal to the coordinates surfaces u1=c1,u2=c2,u3=c3 

Using (4) in (3)we get )6.....(....................
ˆˆˆ

33

3
3

22

2
2

11

1
1

uh

e
u

uh

e
u

uh

e
u

Expression for divergence of a vector functions in orthogonal curvilinear 
coordinates. 

Let  321 ,, uuuf


 be a vector point function such that 332211 ˆˆˆ efefeff


where f1,f2,f3 are 

components  f


along 321 ˆ,ˆ,ˆ eee  respectively. 

)()()(1

)(1)ˆ(

)(1)ˆ(

)(1)ˆ(

ˆ
).(

)5(
ˆˆ

).()).(()ˆ.(

0....sin.0..
))()sin(

)()()()ˆ(
))4....(sin)(()ˆˆ()ˆ(,,
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3
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213
3321
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132
2321
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321
1321

11

32

1
321

32

32
3213232111

32

323213232111

3232132111

332211

hhf
u

hhf
u

hhf
uhhh

f

hhf
uhhh

ef

hhf
uhhh

efsimilarly

hhf
uhhh

ef

hh

e
hhf

from
hh

ee
hhfuuhhfef

gradcurlceuualso

AAAgu

uuhhfuuhhfef

guuuhhfeefefconsider

efefefff







Expression for Fcurl


in orthogonal curvilinear coordinates 

Let ),,( 321 uuuF


 be a vector point function such that 332211 ˆˆˆ efefeff


Fcurl


= )ˆ( 11efcurl + )ˆ( 22efcurl + )ˆ( 33efcurl  

Consider )ˆ( 11efcurl = )( 111 uhfcurl = 111111 )( uhgradfucurlhf
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= 1 1 1grad f h u

3311
2

22
1

2233
1

11
3

122
3

33
2

321

2233
1

1133
2321

33

1122
3
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1
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ˆ)}({ˆ)}({1
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]ˆ)(1ˆ)(1ˆ)(1[
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hehf
u

hehf
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hehf
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hehf
uhhh

andgu
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e
ehf
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ehf
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

Thus 

332211

321

332211

321

ˆˆˆ
1

hfhfhf

uuu

hehehe

hhh
fcurl


 is the expression for fcurl


 in orthogonal curvilinear 

coordinates. 

Expression for 2  in orthogonal curvilinear coordinates 

Let ),,( 321 uuu be a scalar function of u1,u2,u3 

We know 

33
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3
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2
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e
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e
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e
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e
uh

e
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e
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This is the expression for 2  in orthogonal curvilinear coordinates. 
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BETA AND GAMMA FUNCTIONS 

Definitions 

Properties of Beta and Gamma Functions 
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Relationship between Beta and Gamma Functions 
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1.
Sol: 
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2.

Specialization to Cartesian coordinates: 

For Cartesian system, we have 1 2 3 1 2 3 1 2 3, , ; , , 1u x u y u z e i e j e k and h h h
    

The elementary arc length is given by 2 2 2 2ds dx dy dz

1 2 3, ,dA dxdy dA dydz dA dzdx the elementary volume element is given by dv dxdydz

Specialization to cylindrical Polar coordinates: 

In this case 1 2 3,u u u z

Also cos , sin , .x y z z The unit vectors 1 2 3, ,e e e
   are denoted by , , ze e e

    respectively 

in this system. 

Let ˆˆ ˆ ˆ ˆ ˆ ˆcos sin cos sin ; sin cos ;r r r
r i j zk i j i j k

z

  

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The scalar factors are given by 1 2 31, 1, 1,r r r
h h h

z

  

The elementary arc length is given by 2 2 2 2 2 2 2
1 1 2 2 3 3( ) ( ) ( ) ( )ds h du h du h du

i.e; 2 2 2 2 2( ) ( ) ( ) ( )ds d d dz

The volume element dv is given by 1 2 2 1 2 3 . ;dv h h h du du du i e dv d d dz

Show that the cylindrical coordinate system is orthogonal curvilinear 
coordinate system 

Proof: Let ˆˆcos sinr i j zk
 be the position vector of any point P. If , , ze e e

    are the 

unit vectors at P in the direction of the tangents to , and z curves respectively, then we have 

1 2 3ˆ ˆ ˆ, z

r r r
h e h e h e

z

  

For cylindrical coordinate system 1 2 31, , 1h h h  

1 ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , cos sin ; sin cos ;z

r r r
e e e e i j e i j e k

z

  

Now ˆ ˆ ˆ ˆ ˆ ˆcos sin sin cos 0; 0 0ze e e e and e e  

Hence the unit vectors , , ze e e
  

are mutually perpendicular, which shows that the cylindrical

polar coordinate system is orthogonal curvilinear coordinate system. 

Specialization to spherical Polar coordinates 

In this case 1 2 3, , . sin cos , sin cos , cos .u r u u Also x r y r z r  In this system 

unit vectors 1 2 3, ,e e e
  

are denoted by , , ze e e
  

 respectively. These unit vectots are extended 

respectively in the directions of r increasing, increasing and  increasing. 

Let r
 be the position vector of the point P. Then  

ˆˆ ˆ( sin cos ) ( sin sin ) ( cos )r r i r j r k


ˆ ˆˆ ˆ ˆ ˆsin cos sin sin cos ; cos cos cos sin sinr r
i j k r i r j r k

r

 
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ˆsin sin sin cosr
r i r j



The scalar factors are 1 2 31, , sinr r r
h h r h r

r

  

The elementary arc length is given by 2 2 2 2 2 2 2
1 1 2 2 3 3( ) ( ) ( ) ( )ds h du h du h du

i.e 2 2 2 2 2 2 2 2( ) ( ) ( ) sin ( )ds dr r d r d

The volume element is given by 2
1 2 2 1 2 3 . ; sindv h h h du du du i e dv r drd d

Show that the spherical coordinate system is orthogonal curvilinear coordinate system and 
also prove that ( , , )re e e

   form a right handed basis. 

Proof: We have for spherical Polar coordinate system 

ˆˆ ˆ( sin cos ) ( sin sin ) ( cos )r r i r j r k


Let , ,re e e
   be the base vectors at P in the directions of the tangents to , ,r  curves respectively 

then we have 

1 1 2 2 3 3

1 2 3

ˆ ˆ ˆ; 1, ,

ˆ ˆ ˆ. ; 1, ,r

r r r
h e h e r h e

r

r r r
i e h e h e r h e

r

  

  

We know that for spherical polar coordinate the scalar factors 1 2 31, 2, sinh h h r

ˆˆˆ cos cos cos sin sinr
re r i r j r k



ˆ ˆˆsin sin sin sin cosr e r i r j  

2ˆ ˆ sin cos (cos sin ) sin cos 0
ˆ ˆ cos cos sin cos cos sin 0
ˆ ˆ sin cos sin sin cos sin 0

r

r

Now e e

e e

e e

ˆˆ ˆˆ sin cos sin sin cosr

r
e i j k

r


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This shows that ˆ ˆ ˆ,re e and e are mutually perpendicular. Hence spherical polar coordinates are 

also orthogonal curvilinear coordinates. 

Further 

ˆˆ
ˆ ˆˆ ˆ ˆsin cos sin sin cos sin cos

cos cos cos sin sin
r

i j k

e e i j e

Similarly we can show that ˆ ˆ ˆ ˆ ˆ ˆ
re e e and e e e which shows that ( , , )re e e

   form a right 

handed basis. 

Coordinate transformation with a change of basis: 

To express the base vectors e1,e2,e3 in terms of i, j, k 

We can use from matrix algebra, if Y=AX then X=A-1Y provided A is non singular.

1) Cylindrical polar coordinates (eρ, eφ, ez)

We have for cylindrical coordinate system 

eρ= cosφi+sinφj,  eφ =-sinφj +cosφi; ez=k…………(1) 

This gives the transformation of the base vectors in terms of (i,j,k) 

1) Can be written in matrix form
e

e

e

=
100
0cossin
0sincos

k

j

i

On inverting ,we get 
k

j

i

=
100
0cossin
0sincos

e

e

e

………………..(a) 

i=cosφeρ-sinφeρ ; j=sinφeρ+ cosφeφ, k=ez 

This gives the transformation of (i,j,k) in terms of the base vectors(eρ,eφ,ez). 

2) Spherical polar coordinates:

We have er = sinθcosφi + sinθsinφj + cosθk 

       eθ = cosθcosφi + cosθsinφj + sinθk 

       eφ= -sinφi + cosφj 
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This gives the transformation of the base vectors in terms of (i,j,k) 

Writing in matrix form 
e

e

er

=
0cossin

cossincossinsin
cossinsincossin

k

j

i

Inverting the coefficient matrix, 

we get
k

j

i

=
0sincos

cossincossinsin
sincoscoscossin

e

e

er

………..(b) 

k

j

i

=
0sincos

cossincossinsin
sincoscoscossin

This gives the transformation of (i,j,k) in terms of the base vectors (er eθ,,eφ). 

3) Relation between cylindrical and spherical coordinates

Now from (a) and (b) 

100
0cossin
0sincos

e

e

e

=
0sincos

cossincossinsin
sincoscoscossin

e

e

er

Each of the matrices are invertible, therefore we get 

e

e

e

=
100
0cossin
0sincos

=
0sincos

cossincossinsin
sincoscoscossin

e

e

er

e

e

e

=
0sincos
100
0cossin

e

e

er

similarly
e

e

er

=
0cossin

cossincossinsin
cossinsincossin

100
0cossin
0sincos

e

e

e
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=
010

sin0cos
cos0sin

e

e

e

This gives 
re =sin e + cos e , 

         e = cos e sin e  and e =e

These two results give us the relation between cylindrical and spherical coordinates bases and 
vice versa. 

PROBLEMS: 

1. Express vector f=2yi-zj+3xk in cylindrical coordinates and find fρ, fφ fz. 

Sol:The relation between the Cartesian and cylindrical coordinates given by 

   X=ρcosφ,y=ρsinφ,z=z 

   i=cosφeρ-sinφeρ ; j=sineρ+ cosφeφ, k=ez.

We have f=2yi-zj+3xk 

   f= 2y(cosφeρ - sinφeρ) - z(sinφeρ  +  cosφeφ) + 3x(ez) 

   f= 2ρsinφ (cosφeρ - sinφeρ) - z(sinφeρ  + cosφeφ) + 3 ρcosφ (ez) 

f= (2ρsinφcosφ - zsinφ)eρ - (2ρsin2 φ + zcosφ)eφ + 3ρcosφez

   Therefore 

fρ =2ρsinφcosφ - zsinφ ; fφ = -2ρsin2 φ + zcosφ ; fz = 3ρcosφ.

2) Express the vector f=zi-2xj+yk in terms of spherical polar coordinates and find fr, fθ, fφ,

Sol: In spherical coordinates, we have 

er = Sinθcosφi + sinθsinφj + cosθk ………(1) 

eθ = Cosθcosφi + cosθsinφj - sinθk ………(2) 

eφ = -Sinφi + cosφj ………(3).  

The relation between Cartesian and spherical coordinates 
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MODULE – 5 

LAPLACE TRANSFORM 
INTRODUCTION 
 Laplace transform is an integral transform employed in solving physical problems.

 Many physical problems when analysed assumes the form of a differential equation

subjected to a set of initial conditions or boundary conditions.

 By initial conditions we mean that the conditions on the dependent variable are specified

at a single value of the independent variable.

 If the conditions of the dependent variable are specified at two different values of the

independent variable, the conditions are called boundary conditions.

 The problem with initial conditions is referred to as the Initial value problem.

 The problem with boundary conditions is referred to as the Boundary value problem.

Example 1: The problem of solving the equation xy
dx

dy

dx

yd
2

2

 with conditions y(0) = y

(0) = 1 is an initial value problem. 

Example 2: The problem of solving the equation  xy
dx

dy

dx

yd cos23 2

2

 with    y(1)=1, 

y(2)=3 is called Boundary value problem. 

Laplace transform is essentially employed to solve initial value problems.  This technique 

is of great utility in applications dealing with mechanical systems and electric circuits.  

Besides the technique may also be employed to find certain integral values also.  The 

transform is named after the French Mathematician P.S. de’ Laplace (1749 – 1827). 

The subject is divided into the following sub topics. 
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Definition: 

Let f(t) be a real-valued function defined for all t  0 and s  be a parameter, real or 

complex.  Suppose the integral  
0

)( dttfe st
 exists (converges).  Then this integral is called the 

Laplace transform of f(t) and is denoted by L[f(t)].  

Thus, L[f(t)]   = 
0

)( dttfe st
(1) 

We note that the value of the integral on the right hand side of (1) depends on s.  Hence 
L[f(t)] is a function of s denoted by F(s) or  )(sf . 

Thus, L[f(t)] = F(s) (2) 

Consider relation (2). Here f(t) is called the Inverse Laplace transform of F(s) and is 
denoted by L-1 [F(s)].

Thus, L-1 [F(s)]  = f(t) (3) 

Suppose f(t) is defined as follows : 

f1(t),    0 < t < a 

f(t) =      f2(t),    a < t < b 

     f3(t),    t > b 

Note that f(t) is piecewise continuous. The Laplace transform of f(t) is defined as 

LAPLACE TRANSFORMS 

Definition and 

Properties 

Transforms of 

some functions 

Convolution 

theorem 

Inverse 

transforms 

Solution of 

differential 

equations 
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L[f(t)] = 
0

)(tfe st

        = 
a b

a b

ststst dttfedttfedttfe
0

321 )()()(

NOTE:  In a practical situation, the variable t represents the time and s represents frequency.  

Hence the Laplace transform converts the time domain into the frequency domain. 

Basic properties  
The following are some basic properties of Laplace transforms: 

1. Linearity property: For any two functions f(t) and (t) (whose Laplace transforms exist)

   and any two constants a and b, we have 

L [a f(t) + b (t)] = a L[f(t)] + b L[ (t)] 

   Proof :- By definition, we have 

L [af (t) + b (t)] = dttbtafe st

0

)()(    =   
0 0

)()( dttebdttfea stst

          = a L[f(t)] + b L[ (t)] 

  This is the desired property. 

   In particular, for a=b=1, we have 

L [ f(t) +  (t)] =  L [f(t)] +  L[ (t)] 

   and for a = -b = 1, we have L [ f(t) -  (t)] =  L [f(t) ]-  L[ (t)] 

2. Change of scale property: If L L[f(t)] = F(s), then L[f(at)] =
a

s
F

a

1 , where a is a 

positive constant. 

    Proof: - By definition, we have 

L[f(at)] = 
0

)( dtatfe st
(1) 
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    Let us set   at = x. Then expression (1) becomes, 

L f(at) = 
0

)(1
dxxfe

a

x
a

s

a

s
F

a

1

This is the desired property. 

3. Shifting property: - Let a be any real constant. Then

L [eatf (t)] = F(s-a)

    Proof :-  By definition, we have 

L [eatf (t)] =
0

)( dttfee atst

    = 
0

)( )( dttfe as

=  F(s-a) 

This is the desired property.  Here we note that the Laplace transform of eat f(t) can be written
down directly by changing s to s-a in the Laplace transform of f(t). 

LAPLACE TRANSFORMS OF STANDARD FUNCTIONS 
1. Let a be a constant.  Then

L[(eat)] =
0 0

)( dtedtee tasatst

         = asas

e tas 1
)( 0

)(

,     s > a 

Thus, 

111



L[(eat)] =
as

1

In particular, when a=0, we get 

L(1) = 
s

1  ,      s > 0 

By inversion formula, we have 

atat e
s

Le
as

L
11 11

2. L(cosh at) = 2

atat ee
L     = 

02
1

dteee atatst

    = 
0

)()(

2
1

dtee tastas

        Let   s > |a|.  Then, 

0

)()(

)()(2
1)(cosh

as

e

as

e
atL

tastas

        = 22 as

s

        Thus,     L (cosh at) = 22 as

s
,    s > |a| 

and so 

at
as

s
L cosh22

1

3. L (sinh at) = 222 as

aee
L

atat

 ,     s > |a| 

     Thus, 
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L (sinh at) = 22 as

a
,    s > |a| 

      and so, 

a

at

as
L

sinh1
22

1

4. L (sin at) =
0

sin ate st
 dt 

    Here we suppose that s > 0 and then integrate by using the formula 

bxbbxa
ba

e
bxdxe

ax
ax cossinsin 22

     Thus, 

L (sinh at) = 22 as

a
,   s > 0 

     and so 

a

at

as
L

sinh1
22

1

5. L (cos at) = atdte st cos
0

    Here we suppose that s>0 and integrate by using the formula 

bxbbxa
ba

e
bxdxe

ax
ax sincoscos 22

     Thus,    L (cos at) = 22 as

s
,    s > 0 
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      and so at
as

s
L cos22

1

6. Let n be a constant, which is a non-negative real number or a negative non-integer.  Then

L(tn) =
0

dtte nst

    Let s > 0 and set st = x,      then 

0 0
1

1)( dxxe
ss

dx

s

x
etL nx

n

n

xn

The integral dxxe nx

0
  is called gamma function of (n+1) denoted by )1(n . Thus     

1

)1()(
n

n

s

n
tL

In particular, if n is a non-negative integer then )1(n =n!.  Hence

1
!)(

n

n

s

n
tL

      and so 

)1(
1

1
1

n

t

s
L

n

n   or  !n

t n

  as the  case may be 

Application of shifting property:- 

The shifting property is  

If   L f(t) = F(s), then L [eatf(t)] = F(s-a)

Application of this property leads to the following results : 
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1.  
ass

ass

at

bs

s
btLbteL 22)(cosh)cosh(     = 22)( bas

as

     Thus,      

L(eatcoshbt)    = 22)( bas

as

     and 

bte
bas

as
L at cosh

)( 22
1

2.  22)(
)sinh(

bas

a
bteL at

      and 

bte
bas

L at sinh
)(
1

22
1

3.  22)(
)cos(

bas

as
bteL at

      and 

bte
bas

as
L at cos

)( 22
1

4.  22)(
)sin(

bas

b
bteL at

      and 
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b

bte

bas
L

at sin
)(
1

22
1

5. 1)(
)1()(

n

nat

as

n
teL    or   1)(

!
nas

n
   as the case may be 

     Hence 

)1()(
1

1
1

n

te

as
L

nat

n     or   1)(
!

nas

n
  as the case may be 

Examples :- 
1. Find L[f(t)] given   f(t) =  t,    0 < t < 3

          4,    t > 3 

     Here 

L[f(t)]= 
0

3

0 3

4)( dtetdtedttfe ststst

     Integrating the terms on the RHS,  we get 

L[f(t)] = )1(11 3
2

3 ss e
s

e
s

 

    This is the desired result. 

2. Find L[f(t)] given  L[f(t)] =       sin2t,   0 < t 

0,         t > 

    Here 

L[f(t)] = dttfedttfe stst )()(
0

          = 
0

2sin tdte st
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       = 
0

2 2cos22sin
4

tts
s

e st

     = 
se

s
1

4
2

2

     This is the desired result. 

3. Evaluate:      (i)   L(sin3t sin4t) 
(ii)   L(cos2 4t)
(iii)  L(sin32t)

(i)  Here        L(sin3t sin4t) = L [ )]7cos(cos
2
1

tt  

          = )7(cos)(cos
2
1

tLtL ,  by using linearity property 

          = 
)49)(1(

24
4912

1
2222 ss

s

s

s

s

s

(ii)  Here 

L(cos24t) =
64

1
2
1)8cos1(

2
1

2s

s

s
tL

(iii) We have 

3sinsin3
4
1sin3

        For =2t,    we get 

ttt 6sin2sin3
4
12sin3

   so that 

)36)(4(
48

36
6

4
6

4
1)2(sin 2222

3

ssss
tL

   This is the desired result. 
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4. Find    L(cost cos2t cos3t)

Here    cos2t cos3t = ]cos5[cos
2
1

tt  

so that 

cost cos2t cos3t = ]coscos5[cos
2
1 2 ttt  

   = ]2cos14cos6[cos
4
1

ttt  

 Thus  L(cost cos2t cos3t) = 
4

1
16364

1
222 s

s

ss

s

s

s

5. Find    L(cosh22t)

    We have 

2
2cosh1cosh2

For  = 2t, we get 

2
4cosh12cosh2 t

t

Thus,  

16
1

2
1)2(cosh 2

2

s

s

s
tL

6. Evaluate    (i) L( t )     (ii)
t

L
1 (iii) L(t-3/2)

We have    L(tn) = 1
)1(

ns

n

(i) For n= 
2
1 , we get 
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L(t1/2) = 2/3

)1
2
1(

s

          Since )()1( nnn ,  we have 
22

1
2
11

2
1

          Thus,    
2

3
2

)(
s

tL

       (ii) For n = -
2
1 ,   we get 

ss
tL

2
1

2
1 2

1

)(

        (iii) For n = -
2
3 , we get 

s
ss

tL 222
1

)(
2

1
2

1
2

3

7. Evaluate:  (i)  L(t2)     (ii)   L(t3)

We have, 

L (tn) = 1
!

ns

n

      (i) For n = 2, we get 

L (t2) = 33
2!2
ss

      (ii) For n=3, we get 

L (t3) = 44
6!3
ss

8. Find L [e-3t (2cos5t – 3sin5t)]
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          Given  = 

2L (e-3t cos5t) – 3L(e-3t sin5t)

=
25)3(

15
25)3(

32 22 ss

s
,  by using shifting property 

= 
346

92
2 ss

s  ,   on simplification 

9. Find L [coshat sinhat]

         Here L [coshat sinat] = at
ee

L
atat

sin
2

= 2222 )()(2
1

aas

a

aas

a

, on simplification 

10. Find L (cosht sin3 2t)

Given 

4
6sin2sin3

2
ttee

L
tt

= )6sin()2sin(3)6sin(2sin3
8
1

teLteLteLteL tttt

= 
36)1(

6
4)1(

6
36)1(

6
4)1(

6
8
1

2222 ssss

= 
36)1(

1
24)1(

1
36)1(

1
4)1(

1
4
3

2222 ssss

])][()[(
)2(

2222

22

aasaas

asa
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11. Find )( 2
54 teL t  

 We have 

L(tn) = 1
)1(

ns

n    Put n= -5/2.  Hence 

L(t-5/2) = 2/32/3 3
4)2/3(
ss

  Change s to s+4. 

Therefore,     2/3
2/54

)4(3
4)(

s
teL t

 Transform of tn f(t) 

Here we suppose that n is a positive integer.  By definition, we have 

F(s) = 
0

)( dttfe st

Differentiating ‘n’ times on both sides w.r.t. s, we get 

0

)()( dttfe
s

sF
ds

d st

n

n

n

n

Performing differentiation under the integral sign, we get 

0

)()()( dttfetsF
ds

d stn

n

n

Multiplying on both sides by (-1)n , we get

0

)]([)(()()1( tftLdtetftsF
ds

d nstn

n

n
n , by definition 

Thus, 

L [tnf(t)]= )()1( sF
ds

d
n

n
n  

This is the transform of tn f (t).
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Also, 

)()1()(1 tftsF
ds

d
L nn

n

n

In particular, we have 

L[t f(t)] = )(sF
ds

d ,  for n=1 

L [t2 f(t)]= )(2

2

sF
ds

d
,   for n=2,   etc. 

Also, )()(1 ttfsF
ds

d
L    and  

)()( 2
2

2
1 tftsF

ds

d
L

Transform of 
t

f(t)

We have, F(s) = 
0

)( dttfe st

Therefore, 

s s
dsdttfstedssF

0
)()(

= dtdsetf
s

st

0

)(

= 
0

)( dt
t

e
tf

s

st
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= 
0

)()(
t

tf
Ldt

t

tf
e st

   Thus, 
s

dssF
t

tf
L )()(

 

   This is the transform of 
t

tf )(

   Also,  
s

t

tf
dssFL

)()(1

Examples : 

1. Find L [te-t sin4t]

     We have, 
16)1(

4]4sin[ 2s
teL t

      So that, 

L [te-t sin4t] = 
172

14 2 ssds

d

       = 22 )172(
)1(8

ss

s

2. Find L (t2 sin3t)

    We have L (sin3t) = 
9

3
2s

     So that, 

L (t2 sin3t) =
9

3
22

2

sds

d

= 22 )9(
6

s

s

ds

d

= 32

2

)9(
)3(18

s

s
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3. Find
t

te
L

t sin

    We have 

1)1(
1)sin( 2s

teL t

     Hence 
t

te
L

t sin = 
0

1
2 )1(tan

1)1( s
s

s

ds

        = )1(tan
2

1 s = cot –1 (s+1)

4. Find
t

t
L

sin . Using this, evaluate L
t

atsin

     We have  L (sint) = 
1

1
2s

       So that L [f (t)] = 
t

t
L

sin  = S

s

s
s

ds 1
2 tan

1

    = )(cottan
2

11 sFss

        Consider 

L
t

atsin  = a L )(sin
ataLf

at

at  

      =
a

s
F

a
a

1 , in view of the change of scale property 

     = 
a

s1cot
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5. Find L
t

btat coscos

    We have L [cosat – cosbt] = 2222 bs

s

as

s

     So that L
t

btat coscos = ds
bs

s

as

s

s

2222  

= 
s

bs

as
22

22

log
2
1

     = 22

22

22

22

loglog
2
1

bs

as

bs

as
Lt

s

     = 22

22

log0
2
1

as

bs

= 22

22

log
2
1

as

bs

6. Prove that
0

3

50
3sintdtte t

    We have 

0

)sin(sin ttLtdtte st     = )(sintL
ds

d    = 
1

1
2sds

d

= 22 )1(
2

s

s

     Putting s = 3 in this result, we get 

0

3

50
3sintdtte t

     This is the result as required. 
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Consider 

L )(tf =
0

)( dttfe st

= 
0

0 )()()( dttfestfe stst , by using integration by parts 

= )()0()(( tsLfftfeLt st

t

= 0 - f (0) + s L[f(t)] 

Thus 

L )(tf  = s L[f(t)] – f(0) 

Similarly, 

L )(tf  = s2 L[f(t)] – s f(0) - )0(f

In general, we have 

)0(.......)0()0()()( 121 nnnnn ffsfstLfstLf  

Transform of 
t

0

f(t)dt

Let  (t) =
t

dttf
0

)( .  Then (0) = 0   and (t) = f(t) 

Now,       L (t) = 
0

)( dtte st

     = 
00

)()( dt
s

e
t

s

e
t

stst
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    = 
0

)(1)00( dtetf
s

st  

Thus, 
t

tfL
s

dttfL
0

)]([1)(  

Also, 

t

dttftfL
s

L
0

1 )()]([1

Examples: 

1. By using the Laplace transform of sinat, find the Laplace transforms of cosat.

    Let f(t) = sin at, then Lf(t) = 22 as

a

     We note that 

atatf cos)(

      Taking Laplace transforms, we get 

)(cos)cos()( ataLataLtfL  

       or L(cosat) = )0()(1)(1
ftsLf

a
tfL

a

  = 01
22 as

sa

a

        Thus 

L(cosat) = 22 as

s

       This is the desired result. 

2. Given 2/3

12
s

t
L ,  show that 

st
L

11

     Let f(t) = 
t2 ,  given L[f(t)] = 2/3

1
s

127



     We note that, 
tt

tf
1

2
12)(

      Taking Laplace transforms, we get 

t
LtfL

1)(

      Hence 

)0()()(1
ftsLftfL

t
L  

    = 01
2/3s

s  

       Thus 
st

L
11

      This is the result as required. 

3. Find
t

dt
t

btat
L

0

coscos

    Here L[f(t)] = 22

22

log
2
1coscos

as

bs

t

btat
L

      Using the result  L
t

tLf
s

dttf
0

)(1)(

      We get, 
t

dt
t

btat
L

0

coscos
 = 22

22

log
2
1

as

bs

s

4. Find
t

t tdtteL
0

4sin  
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     Here 22 )172(
)1(84sin

ss

s
tteL t

      Thus 
t

t tdtteL
0

4sin  = 22 )172(
)1(8

sss

s

Laplace Transform of a periodic function 
Formula: Let f (t) be a periodic function of period T. Then 

T

st

ST
dttfe

e
tLf

0

)(
1

1)(

Proof :By definition, we have 

L f (t) = 
0 0

)()( duufedttfe sust

         =  ....)(.......)()(
)1(2

0

Tn

nT

su

T

T

su

T

su duufeduufeduufe

         = 
0

)1(

)(
n

Tn

nT

su duufe

Let us set u = t + nT,   then 

L f(t) = 
0 0

)( )(
n

T

t

nTts dtnTtfe

Here 

f(t+nT) = f(t), by periodic property 

Hence 

T

st

n

nsT dttfeetLf
00

)()()(
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=
T

st

ST
dttfe

e 0

)(
1

1
, identifying the above series as a geometric series. 

Thus L[ f(t)] = 
T

st

sT
dttfe

e 0

)(
1

1

This is the desired result. 

Examples:- 
1. For the periodic function f(t) of period 4, defined by  f(t) =   3t,  0 < t < 2

        6,  2 < t < 4 

    find  L [f(t)] 

    Here, period of f(t) = T = 4 

    We have, 

L f(t) = 
T

st

sT
dttfe

e 0

)(
1

1

= 
4

0
4 )(

1
1

dttfe
e

st

s

        = 

4

2

2

0
4 63

1
1

dtedtte
e

stst

s

        = 

4

2

2

0

2

0
4 6.13

1
1

s

e
dt

s

e

s

e
t

e

ststst

s

       = 2

42

4

213
1

1
s

see

e

ss

s

      Thus, 

L[f(t)] = 
)1(

)21(3
42

42

s

ss

es

see
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3. A periodic function of period 2  is defined by 

f (t)=      Esin t,   0  t < 

0,         t 2

     where E and  are positive constants.  Show that  L f(t) = )1)(( /22 wsews

E

    Sol:  Here   T = 2 .  Therefore 

L f(t) = 
/2

0
)/2( )(

1
1

dttfe
e

st

s

= 

/

0
)/2( sin

1
1

tdtEe
e

st

s

         = 

/

0
22)/2( cossin

1
tts

s

e

e

E st

s

         = 22

/

)/2(

)1(
1 s

e

e

E s

s

        = ))(1)(1(
)1(

22//

/

see

eE
ss

s

        = ))(1( 22/ se

E
s

This is the desired result. 

3. A periodic function f(t) of period 2a,  a>0 is defined by

f (t)=      E ,  0  t  a 
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-E, a < t  2a 

    show that   L [f (t)] = 
2

tanh as

s

E

    Sol:  Here T = 2a.  Therefore  L [f (t)] = 
a

st

as
dttfe

e

2

0
2 )(

1
1

         = 
a a

a

stst

as
dtEedtEe

e 0

2

21
1

        = )(1
)1(

2
2

asassa

as
eee

es

E

2

2 1
)1(

as

as
e

es

E

)1)(1(
)1( 2

asas

as

ees

eE

       = 2/2/

2/2/

asas

asas

ee

ee

s

E

2
tanh as

s

E

This is the result as desired. 

Step Function: 

In many Engineering applications, we deal with an important discontinuous function H 
(t-a) defined as follows: 

          0,   t  a 

H (t-a) =       1,   t > a 

where a is a non-negative constant. 
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This function is known as the unit step function or the Heaviside function. The function is 
named after the British electrical engineer Oliver Heaviside.The function is also denoted by 
u (t-a).  The graph of the function is shown below: 

       H (t-1) 

Note that the value of the function suddenly jumps from value zero to the value 1 as at   
from the left and retains the value 1 for all t>a.  Hence the function H (t-a) is called the unit step 
function. 

In particular, when a=0, the function H(t-a) become  H(t), where 

0 ,   t  0 

H(t) = 1 ,  t > 0 

Transform of step function 

By definition, we have L [H(t-a)] = 
0

)( dtatHe st

= 
a

a

stst dtedte
0

)1(0

= 
s

e as

In particular, we have   L H(t) = 
s

1

Also,          )(1 atH
s

e
L

as

    and  )(11 tH
s

L

Unit step function (Heaviside function) 

Statement: - L [f (t-a) H (t-a)] = e-as Lf(t) 

Proof: - We have 

133



       L [f(t-a) H(t-a)] = 
0

)()( dteatHatf st

      = 
a

st dtatfe )(

Setting   t-a = u, we get 

L[f(t-a) H(t-a)] = duufe uas )(
0

)(

= e-as L [f(t)]

This is the desired shift theorem. 

Also,      L-1 [e-as L f(t)] = f(t-a) H(t-a)

Examples: 

1. Find L [et-2 + sin(t-2)] H(t-2)

     Sol: Let f (t-2) = [et-2 + sin (t-2)]

Then f (t) = [et + sint]

     so that L f(t) = 
1

1
1

1
2ss

     By Heaviside shift theorem, we have 

L[f(t-2) H(t-2)] = e-2s Lf(t)

     Thus, 

1
1

1
1)2()]2sin([ 2

2)2(

ss
etHteL st

2. Find L (3t2 +2t +3) H(t-1)

Sol:  Let    f(t-1) = 3t2 +2t +3
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     so that  

f (t) = 3(t+1)2 +2(t+1) +3 = 3t2 +8t +8

     Hence 

sss
tfL

886)]([
23

     Thus 

L [3t2 +2t +3] H(t-1) = L[f(t-1) H(t-1)]

= e-s L [f(t)]

         = 
sss

e s 886
23

3. Find Le-t H (t-2)

Sol: Let f (t-2) = e-t ,     so that,   f(t) = e-(t+2)

    Thus, L [f(t)] = 
1

2

s

e

    By shift theorem, we have 

1
)()]2()2([

)1(2
2

s

e
tLfetHtfL

s
s

     Thus 

1
)2(

)1(2

s

e
tHeL

s
t

 f1 (t),    t   a 

4. Let f (t) =       f2 (t) ,   t  > a 

     Verify that f(t) = f1(t) + [f2(t) – f1(t)]H(t-a) 

   Sol:   Consider 
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 f1(t) + [f2(t) – f1(t)]H(t-a) =      f1(t) +    f2 (t) – f1(t),   t > a 

0 ,           t  a 

=     f2 (t),   t > a 

f1(t),    t  a   = f(t), given 

Thus the required result is verified. 

5. Express the following functions in terms of unit step function and hence find their
Laplace transforms. 

1. f(t) = t2 ,   1 < t  2

     4t ,    t > 2 

Sol: Here, f(t) = t2 + (4t-t2) H(t-2)

    Hence, L f(t) = )2()4(2 2
3 tHttL

s
 (i) 

Let   (t-2) = 4t – t2

so that   (t) = 4(t+2) – (t+2)2 = -t2 + 4

    Now,
ss

tL
42)]([

3

    Expression (i) reads as 

     L f(t) = )2()2(2
3 tHtL

s

= )(2 2
3 tLe

s

s

   = 3
2

3

242
ss

e
s

s

   This is the desired result 
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2.  cost,  0 < t < 

    f (t) =     sint,   t > 

Sol:  Here  f(t) = cost + (sint-cost)H(t- )  

Hence, L[ f(t)] = )()cos(sin
12 tHttL

s

s  (ii) 

Let  (t- ) = sint – cost 

Then (t) = sin(t + ) – cos(t + ) = -sint + cost 

so that  L[ (t)] = 
11

1
22 s

s

s

Expression (ii) reads as L [f(t)] = )()(
12 tHtL

s

s

= )(
12 tLe

s

s s

UNIT IMPULSE FUNCTION
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Solution: 
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3.

4.
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The Inverse Laplace Transforms 

Introduction: 
Let L [f (t)]= F(s).  Then f(t) is defined as the inverse Laplace transform of F(s) and is 

denoted by L-1 F(s).  Thus L-1 [F(s)] = f (t).

Linearity Property 
Let L-1 [F(s)] = f(t) and L-1 [G(s) = g(t)] and   a and b be any two constants.  Then

L-1 [a F(s) + b G(s)] = a L-1 [F(s)] + b L-1[G(s)]

         Table of Inverse Laplace Transforms 

F(s) )()( 1 sFLtf

0,1
s

s
 1 

as
as

,1 ate

0,22 s
as

s Cos at 

0,1
22 s

as a
atSin  

as
as

,1
22 a

ath Sin 

as
as

s ,22

ath  Cos

0,1
1 s

sn

n = 0, 1, 2, 3, . . . 

!n

tn

0,1
1 s

sn

n > -1 

1n

tn

140



Example 
1. Find the inverse Laplace transforms of the following:

22)(
as

bs
ii 22 9

94
254
52)(

s

s

s

s
iii

Here 

2
5

11

2
1

2
5

1
2
1

52
1)(

t

e
s

L
s

Li

at
a

b
at

as
Lb

as

s
L

as

bs
Lii sincos1)(

22
1

22
1

22
1  

9
2

9
4

4
25
2

5

4
2

9
84

254
52)(

2
1

2

1
22

1

s

s
L

s

s
L

s

s

s

s
Liii

thth
tt 3sin

2
33cos4

2
5sin

2
5cos

2
1

Evaluation of L-1 F(s – a) 

We have, if   L [f(t)] = F(s),  then L[eat f(t)] = F(s – a),  and so

L-1 [F(s – a) ]= eat f (t)  = e at L-1  [F(s)]

Examples 

4
1

1
13: Evaluate 1.

s

s
L

   4
1

3
1

4
1-

1
12

1
13

1
11-1s3L Given 

s
L

s
L

s

52
1)(

s
i
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4
1

3
1 1213

s
Le

s
Le tt

Using the formula 

getweandntakingand
n

t

s
L

n

n
,32

!
1

1
1  

32
3 32 tete

Given
tt

52s-s
2sL : Evaluate 2. 2

1-

41
13

41
1

41
31

41
2L Given 

2
1

2
1

2
1

2
1-

s
L

s

s
L

s

s
L

s

s

4
13

4 2
1

2
1

s
Le

s

s
 Le t-t

tet e tt 2sin
2
32cos

1
2

23.Evaluate :
3

s
L

s

4
5

1

4
5

2
4

5
1

2L Given  2

2
3

1
2

2
3

2
3

1
2

2
3

2
3

1-

s
L

s

s
L

s

s

4
5

1

4
5

2
2

12
3

2

12
3

s
Le

s

s
Le

tt

ththe

t

2
5sin

5
2

2
5cos2 2

3
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2
452L     : Evaluate 4. 23

2
1-

sss

ss

havewe  

12

12
452

2
452

2
452

2

2

2

23

2

s

C

s

B

s

A

sss

ss

sss

ss

sss

ss

Then   2s2+5s-4 = A(s+2) (s-1) + Bs (s-1) + Cs (s+2)

For s = 0, we get A = 2, for s = 1, we get C = 1 and for s = -2, we get B = -1.  Using these values 
in (1), we get 

1
1

2
12

2
452

23

2

ssssss

ss

 Hence 

tt ee
ss

ss
L 2

22

2
1 2

25
452

21
54: Evaluate 5. 2

1

ss

s
L

Let us take 

21121
54

22 s

C

s

B

s

A

ss

s

Then         4s + 5 =A(s + 2) + B(s + 1) (s + 2) + C (s + 1)2

For s = -1, we get A = 1, for s = -2, we get C = -3 
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Comparing the coefficients of s2, we get B + C = 0, so that B = 3.  Using these values in

(1),    we get 2
3

1
3

1
1

21
54

22 sssss

s

Hence
s

Le
s

Le
s

Le
ss

s
L ttt 13131

21
54 121

2
1

2
1

ttt eete 233

3
1

46. Evaluate : s
L

s a

Let
)1(2244

3

as

DCs

as

B

as

A

as

s

Hence s3 = A(s + a) (s2 + a2) + B (s-a)(s2+a2)+(Cs + D) (s2 – a2)

For s = a, we get A = ¼; for s = -a, we get B = ¼; comparing the constant terms, we get 

D = a(A-B) = 0; comparing the coefficients of s3, we get

1 = A + B + C and so C = ½.  Using these values in (1), we get 

2244

3

2
111

4
1

as

s

asasas

s

Taking inverse transforms, we get 

atee
as

s
L atat cos

2
1

4
1

44

3
1

athat coscos
2
1

1
27. Evaluate :

1
s

L
s s

Consider 11
2

2
1

111 222224 ssss

s

ssss

s

ss

s
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4
3

1

4
3

1
2
1

1

4
3

1

4
3

1
2
1

1
1

1
1

2
1

11
11

2
1

2

12
1

2

12
1

24
1

2

2
12

2
1

22

22

22

s

Le

s

Le
ss

s
L

Therefore

ss

ssss

ssss

ssss

tt

2
3
2
3sin

2
3
2
3sin

2
1 2

1
2
1 t

e

t

e
tt

2
sin

2
3sin

3
2 t

ht

Evaluation of L-1[e-as  F (s)] 

We have, if L [f (t)] = F(s), then L[f(t-a) H(t-a) = e-as  F(s), and so

L-1[e-as F(s)] = f(t-a) H(t-a)
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Examples 

4
1

2
:)1(

s

e
LEvaluate

ss

Here  

5
6

5

)()(
2

6
1

2
1)()(

2
1)(,5

352

4

5
1

32

4
12

4
11

4

tH
te

atHatf
s

e
L

Thus

te

s
Le

s
LsFLtfTherefore

s
sFa

t

s

t
t

41
:)2( 2

2

2
1

s

se

s

e
LEvaluate

ss

22coscos

222cossin

)1(

2cos
4

)(

sin
1

1)(

)1(22

2
1

2

2
1

1

21

tHttHt

tHttHtGiven

asreadsrelationNow

t
s

s
Ltf

t
s

LtfHere

tHtftHtfGiven
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Inverse transform of logarithmic functions 
sF

ds

dttfL then F(s),  f(t) L if have, We

Hence        
)(1 ttfsF

ds

d
L

Examples: 

bs

as
LEvaluate log:)1( 1

b

ee
tfThus

eetftor

eesF
ds

d
LthatSo

bsas
sF

ds

d
Then

bsas
bs

as
sFLet

atbt

atbt

btat1

11

logloglog)(

(2) Evaluate  1L
s

a1tan

22

1tan)(

as

a
sF

ds

d
Then

s

a
sFLet
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F s
Inverse transform of

s

22
1 1:)1(

ass
LEvaluate

      Convolution Theorem: 

2

0

1
22

1

1

22

cos1

sin1

sin)(

1

a

at

dt
a

at

s

sF
L

ass
LThen

a

at
sFLtf

thatso
as

sFdenoteusLet

t

a

at
tf

attftor

thatsoatsF
ds

d
Lor

sin

sin

sin1
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Using Convolution 

theorem find the 

inverse laplace 

transforms 

150



1
22

1
2

1
2

0

2

1
2 22

0

3

1(2) :

1:

1

1 1 1 , on integration by parts.

Using  this, we get

1 1 1 1

1 1 2 1

at

t

at

at

t

- at

at at

Evaluate L
s s a

Solution we have L e t
s a

Hence L e t dt
s s a

e at
a

L e at dt
as s a

at e e
a

1

0

We have, if L(t) F(s) and Lg(t) G(s), then

L f(t)  g(t) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
t

Lf t Lg t F s G s and so

L F s G s f t g t f t u g u du

Inverse transform of F(s) by using  convolution theorem :

 transformLaplace inversefor  n theoremconvolutio  thecalled is expression This  
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Examples 

Employ convolution theorem to evaluate the following: 

bsas
L

1)1( 1

1

0 0

1 1Sol:Let us denote F(s) , ( )

Taking the inverse, we get

Therefore, by convolution theorem,

1

1

-at -bt

t t
a t u a b u- bu at

a b t

at

G s
s a s b

f(t)  e , g(t)  e

L e e du e e du
s a s b

e
e

a b

e bt ate

a b

222
1)2(

as

s
L

2 2 2 2

1Sol: Let us denote  , ( ) Then

sin cos
a

s
F(s) G s

s a s a

at
f(t) , g(t)  at

1
22

0

Hence by convolution theorem,

1 sin cos
t

- s
L a t u au du

as a
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0

0

sin sin 21 , by using compound angle formula
2

cos 21 sinsin
2a 2 2

t

t

at at au
du

a

at au t at
u at

a

11
)3( 2

1

ss

s
L

Sol: Here

1
)(,

1
1 2s

s
sG

s
F(s)

 Therefore 

ttette
e

uu
e

eduue
ss

L

t , g(t) ef(t) 

tt
t

t
u

tut-

t

cossin
2
11cossin

2

cossin
2

sin
11

1

have  wen theorem,convolutioBy 

sin

0
2

1

LAPLACE TRANSFORM METHOD FOR DIFFERENTIAL EQUATIONS 

As noted earlier, Laplace transform technique is employed to solve initial-value 

problems.  The solution of such a problem is obtained by using the Laplace Transform of the 

derivatives of function and then the inverse Laplace Transform. 

The following are the expressions for the derivatives derived earlier. 
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f(0) - f(t) L s    (t)]fL[
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1. Solve by using Laplace transform method 2  y(o)   t y   y ,
te

Sol: Taking the Laplace transform of the given equation, we get       
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This is the solution of the given equation.  

2. Solve by using Laplace transform method:

0)()(,sin32 oyoytyyy  
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Sol: Taking the Laplace transform of the given equation, we get 

1
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s
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Using the given conditions, we get 
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equation. integral  thesolve  tomethod Transform LaplaceEmploy3)
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t

0

Sol:  Taking Laplace transform of the given equation, we get

1 sin

By using convolution theorem, here, we get

L f(t) L f u t u du
s

1
)(1sin)(1

2s
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tLtLf

s
L f(t)

equation. integralgiven   theofsolution   theis This
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Thus

2

2

d x dx(4) A particle is moving along a path satisfying, the equation 6 25 0 where
dt dt

x denotes the displacement of the particle at time t.  If the initial position of the particle is at x 20
and the 

x

initial speed is 10, find the displacement of the particle at any time t using Laplace transforms.
Sol:  Given equation may be rewritten as

x''(t) 6x'(t) 25x(t) 0

Here the initial conditions are x(0)  20, x'(0) 10.
Taking the Laplace transform of the equation, we get

2
x

x 2

1
2

L (t) s 6s 25 20 130 0

20 130L (t)
6 25

20 130x(t)
3 16
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problem.given   theofsolution  desired  theis This
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E is t any timeat current  

 that theShow  R. resistance and L inductance ofcircuit  a  to0at t applied is Ee A voltage (5) -at

Sol: The circuit is an LR circuit.  The differential equation with respect to the circuit is 

)(tERi
dt

di
L

Here L denotes the inductance, i denotes current at any time t and E(t) denotes the E.M.F.  

It is given that E(t) = E e-at.  With this, we have

Thus, we have 
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get  wesides,both on  )(  transformLaplace Taking TL

157



as
EtiLRitiLsL TT

1)()0()(

or
as

E
RsLtiLT )(get  weo,  i(o) Since

))((
)(get  we,L  transforminverse Taking

)(

1

RsLas

E
Lti

RsLas

E
tiL

T

T

desired. asresult   theis This

)(

11 11

L

Rt

at

TT

ee
aLR

E
ti

Thus

RsL
LL

as
L

aLR

E

1.  y(o) 2,   with x(o)09
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Sol: Taking Laplace transforms of the given equations, we get 
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6sin36cos
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get we,09
dt
dyin   thisUsing x

tt 6cos186sin6
9
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or

tt 6sin6cos3
3
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(2) 

(1) and (2) together represents the solution of the given equation. 
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